Disturbed shear stress promotes atherosclerosis through TRIM21-regulated MAPK6 degradation and consequent endothelial inflammation

Feng Wang , Shu-Yu Wang , Yue Gu , Shuai Luo , Ai-Qun Chen , Chao-Hua Kong , Wen-Ying Zhou , Li-Guo Wang , Zhi-Mei Wang , Guang-Feng Zuo , Xiao-Fei Gao , Jun-Jie Zhang , Shao-Liang Chen

Clinical and Translational Medicine ›› 2025, Vol. 15 ›› Issue (1) : e70168

PDF
Clinical and Translational Medicine ›› 2025, Vol. 15 ›› Issue (1) : e70168 DOI: 10.1002/ctm2.70168
RESEARCH ARTICLE

Disturbed shear stress promotes atherosclerosis through TRIM21-regulated MAPK6 degradation and consequent endothelial inflammation

Author information +
History +
PDF

Abstract

•Disturbed flow activates the ubiquitin‒proteasome degradation pathway of MAPK6 in endothelial cells, which is contingent on the binding of the ubiquitin ligase TRIM21 to MAPK6.

•Endothelial MAPK6 has an advantageous impact on decelerating plaque progression.

•MAPK6 regulates endothelial inflammation via the EGR1/CXCL12 axis.

Keywords

atherosclerosis / endothelial inflammation / MAPK6 / shear stress / TRIM21

Cite this article

Download citation ▾
Feng Wang, Shu-Yu Wang, Yue Gu, Shuai Luo, Ai-Qun Chen, Chao-Hua Kong, Wen-Ying Zhou, Li-Guo Wang, Zhi-Mei Wang, Guang-Feng Zuo, Xiao-Fei Gao, Jun-Jie Zhang, Shao-Liang Chen. Disturbed shear stress promotes atherosclerosis through TRIM21-regulated MAPK6 degradation and consequent endothelial inflammation. Clinical and Translational Medicine, 2025, 15(1): e70168 DOI:10.1002/ctm2.70168

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Damluji AA, Forman DE, Wang TY, et al. Management of acute coronary syndrome in the older adult population: a scientific statement from the American Heart Association. Circulation. 2023;147(3):e32-e62.

[2]

Mangione CM, Barry MJ, Nicholson WK, et al. Statin use for the primary prevention of cardiovascular disease in adults. Jama. 2022;328(8):746-753.

[3]

Tsao CW, Aday AW, Almarzooq ZI, et al. Heart Disease and Stroke Statistics-2023 update: a report from the American Heart Association. Circulation. 2023;147(8):e93-e621.

[4]

Souilhol C, Serbanovic-Canic J, Fragiadaki M, et al. Endothelial responses to shear stress in atherosclerosis: a novel role for developmental genes. Nat Rev Cardiol. 2020;17(1):52-63.

[5]

Tamargo IA, Baek KI, Kim Y, Park C, Jo H. Flow-induced reprogramming of endothelial cells in atherosclerosis. Nat Rev Cardiol. 2023;20(11):738-753.

[6]

Libby P, Buring JE, Badimon L, et al. Atherosclerosis. Nat Rev Dis Prim. 2019;5(1):56.

[7]

Stefopoulos G, Lendenmann T, Schutzius TM, et al. Bistability of dielectrically anisotropic nematic crystals and the adaptation of endothelial collectives to stress fields. Adv Sci. 2022;9(16):e2102148.

[8]

Tamargo IA, In Baek K, Xu C, et al. HEG1 protects against atherosclerosis by regulating stable flow-induced KLF2/4 expression in endothelial cells. Circulation. 2023.

[9]

Takahashi M, Berk BC. Mitogen-activated protein kinase (ERK1/2) activation by shear stress and adhesion in endothelial cells. Essential role for a herbimycin-sensitive kinase. J Clin Invest. 1996;98(11):2623-2631.

[10]

Wang L, Luo JY, Li B, et al. Integrin-YAP/TAZ-JNK cascade mediates atheroprotective effect of unidirectional shear flow. Nature. 2016;540(7634):579-582.

[11]

Bailey KA, Moreno E, Haj FG, Simon SI, Passerini AG. Mechanoregulation of p38 activity enhances endoplasmic reticulum stress-mediated inflammation by arterial endothelium. FASEB J. 2019;33(11):12888-12899.

[12]

Kassouf T, Sumara G. Impact of conventional and atypical MAPKs on the development of metabolic diseases. Biomolecules. 2020;10(9):1256.

[13]

Arthur JSC, Ley SC. Mitogen-activated protein kinases in innate immunity. Nat Rev Immunol. 2013;13(9):679-692.

[14]

Ronkina N, Gaestel M. MAPK-activated protein kinases: servant or partner? Ann Rev Biochem. 2022;91(1):505-540.

[15]

Zhang Y, Su Z, Liu HL, et al. Effects of miR-26a-5p on neuropathic pain development by targeting MAPK6 in in CCI rat models. Biomed Pharmacother. 2018;107:644-649.

[16]

Huang ZQ, Xu W, Wu JL, Lu X, Chen XM. MicroRNA-374a protects against myocardial ischemia-reperfusion injury in mice by targeting the MAPK6 pathway. Life Sci. 2019;232:116619.

[17]

Luo S, Wang F, Chen S, et al. NRP2 promotes atherosclerosis by upregulating PARP1 expression and enhancing low shear stress-induced endothelial cell apoptosis. FASEB J. 2022;36(2):e22079.

[18]

Zhou W, Wang F, Qian X, et al. Quercetin protects endothelial function from inflammation induced by localized disturbed flow by inhibiting NRP2 -VEGFC complex. Int Immunopharmacol. 2023;116:109842.

[19]

Huang TS, Wang KC, Quon S, et al. LINC00341 exerts an anti-inflammatory effect on endothelial cells by repressing VCAM1. Physiol Genomics. 2017;49(7):339-345.

[20]

Hong SG, Kennelly JP, Williams KJ, et al. Flow-mediated modulation of the endothelial cell lipidome. Front Physiol. 2024;15:1431847.

[21]

Gimbel AT, Koziarek S, Theodorou K, et al. Aging-regulated TUG1 is dispensable for endothelial cell function. PLoS One. 2022;17(9):e0265160.

[22]

Alsaigh T, Evans D, Frankel D, Torkamani A. Decoding the transcriptome of calcified atherosclerotic plaque at single-cell resolution. Commun Biol. 2022;5(1):1084.

[23]

Fernandez DM, Rahman AH, Fernandez NF, et al. Single-cell immune landscape of human atherosclerotic plaques. Nat Med. 2019;25(10):1576-1588.

[24]

Pan H, Xue C, Auerbach BJ, et al. Single-cell genomics reveals a novel cell state during smooth muscle cell phenotypic switching and potential therapeutic targets for atherosclerosis in mouse and human. Circulation. 2020;142(21):2060-2075.

[25]

Wei Y, Lan B, Zheng T, et al. GSDME-mediated pyroptosis promotes the progression and associated inflammation of atherosclerosis. Nat Communicat. 2023;14(1):929.

[26]

Emoto T, Yamamoto H, Yamashita T, et al. Single-cell rna sequencing reveals a distinct immune landscape of myeloid cells in coronary culprit plaques causing acute coronary syndrome. Circulation. 2022;145(18):1434-1436.

[27]

Wirka RC, Wagh D, Paik DT, et al. Atheroprotective roles of smooth muscle cell phenotypic modulation and the TCF21 disease gene as revealed by single-cell analysis. Nat Med. 2019;25(8):1280-1289.

[28]

Chowdhury RR, D’Addabbo J, Huang X, et al. Human coronary plaque T cells are clonal and cross-react to virus and self. Circulat Res. 2022;130(10):1510-1530.

[29]

Kwartler C, Pedroza A, Kaw A, et al. Nuclear smooth muscle α-actin participates in vascular smooth muscle cell differentiation. Nat Cardiovasc Res. 2022;2(10):937-955.

[30]

Davis FM, Tsoi LC, Melvin WJ, et al. Inhibition of macrophage histone demethylase JMJD3 protects against abdominal aortic aneurysms. J Exp Med. 2021;218(6):e20201839.

[31]

Li Y, Ren P, Dawson A, et al. Single-cell transcriptome analysis reveals dynamic cell populations and differential gene expression patterns in control and aneurysmal human aortic tissue. Circulation. 2020;142(14):1374-1388.

[32]

Vion A-C, Ramkhelawon B, Loyer X, et al. Shear stress regulates endothelial microparticle release. Circulat Res. 2013;112(10):1323-1333.

[33]

Dikic I, Schulman BA. An expanded lexicon for the ubiquitin code. Nat Rev Mol Cell Biol. 2022;24(4):273-287.

[34]

Debnath J, Gammoh N, Ryan KM. Autophagy and autophagy-related pathways in cancer. Nat Rev Mol Cell Biol. 2023;24(8):560-575.

[35]

Döring Y, van der Vorst EPC, Duchene J, et al. CXCL12 derived from endothelial cells promotes atherosclerosis to drive coronary artery disease. Circulation. 2019;139(10):1338-1340.

[36]

Mehta NN, Li M, William D, et al. The novel atherosclerosis locus at 10q11 regulates plasma CXCL12 levels. Eur Heart J. 2011;32(8):963-971.

[37]

Gao JH, Yu XH, Tang CK. CXC chemokine ligand 12 (CXCL12) in atherosclerosis: an underlying therapeutic target. Clin Chim Acta. 2019;495:538-544.

[38]

Khachigian LM. Early growth response-1 in cardiovascular pathobiology. Circ Res. 2006;98(2):186-191.

[39]

Noort AR, van Zoest KP, Weijers EM, et al. NF-κB-inducing kinase is a key regulator of inflammation-induced and tumour-associated angiogenesis. J Pathol. 2014;234(3):375-385.

[40]

Madge LA, May MJ. Classical NF-kappaB activation negatively regulates noncanonical NF-kappaB-dependent CXCL12 expression. J Biol Chem. 2010;285(49):38069-38077.

[41]

Allen IC, Wilson JE, Schneider M, et al. NLRP12 suppresses colon inflammation and tumorigenesis through the negative regulation of noncanonical NF-κB signaling. Immunity. 2012;36(5):742-754.

[42]

Mi C, Chen W, Zhang Y, et al. BaP/BPDE suppresses human trophoblast cell migration/invasion and induces unexplained miscarriage by up-regulating a novel lnc-HZ11 in extracellular vesicles: an intercellular study. Environ Int. 2024;188:108750.

[43]

Bordenave J, Thuillet R, Tu L, et al. Neutralization of CXCL12 attenuates established pulmonary hypertension in rats. Cardiovasc Res. 2020;116(3):686-697.

[44]

Regenass P, Abboud D, Daubeuf F, et al. Discovery of a locally and orally active CXCL12 neutraligand (LIT-927) with anti-inflammatory effect in a murine model of allergic airway hypereosinophilia. J Med Chem. 2018;61(17):7671-7686.

[45]

Maurya MR, Gupta S, Li JY-S, et al. Longitudinal shear stress response in human endothelial cells to atheroprone and atheroprotective conditions. Proceed Nat Acad Sci. 2021;118(4):e2023236118.

[46]

Long W, Foulds CE, Qin J, et al. ERK3 signals through SRC-3 coactivator to promote human lung cancer cell invasion. J Clin Invest. 2012;122(5):1869-1880.

[47]

Elkhadragy L, Chen M, Miller K, Yang MH, Long W. A regulatory BMI1/let-7i/ERK3 pathway controls the motility of head and neck cancer cells. Molecul Oncol. 2017;11(2):194-207.

[48]

Cai Q, Zhou W, Wang W, et al. MAPK6-AKT signaling promotes tumor growth and resistance to mTOR kinase blockade. Sci Adv. 2021;7(46):eabi6439.

[49]

Coulombe P, Rodier G, Bonneil E, Thibault P, Meloche S. N-terminal ubiquitination of extracellular signal-regulated kinase 3 and p21 directs their degradation by the proteasome. Mol Cell Biol. 2023;24(14):6140-6150.

[50]

An H-J, Lee C-J, Lee G-E, et al. FBXW7-mediated ERK3 degradation regulates the proliferation of lung cancer cells. Exp Mol Med. 2022;54(1):35-46.

[51]

Mukadam AS, Miller LVC, Smith AE, et al. Cytosolic antibody receptor TRIM21 is required for effective tau immunotherapy in mouse models. Science. 2023;379(6639):1336-1341.

[52]

Bogucka K, Pompaiah M, Marini F, et al. ERK3/MAPK6 controls IL-8 production and chemotaxis. eLife. 2020;9:e52511.

[53]

Libby P. The changing landscape of atherosclerosis. Nature. 2021;592(7855):524-533.

[54]

Soehnlein O, Libby P. Targeting inflammation in atherosclerosis -from experimental insights to the clinic. Nat Rev Drug Discover. 2021;20(8):589-610.

[55]

Gao JH, He LH, Yu XH, et al. CXCL12 promotes atherosclerosis by downregulating ABCA1 expression via the CXCR4/GSK3β/β-cateninT120/TCF21 pathway. J Lipid Res. 2019;60(12):2020-2033.

[56]

Snarski P, Sukhanov S, Yoshida T, et al. Macrophage-specific IGF-1 overexpression reduces cxcl12 chemokine levels and suppresses atherosclerotic burden in Apoe-deficient mice. Arterioscler Thromb Vasc Biol. 2022;42(2):113-126.

RIGHTS & PERMISSIONS

2025 The Author(s). Clinical and Translational Medicine published by John Wiley & Sons Australia, Ltd on behalf of Shanghai Institute of Clinical Bioinformatics.

AI Summary AI Mindmap
PDF

141

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/