Exosome-derived long non-coding RNA AC010789.1 modified by FTO and hnRNPA2B1 accelerates growth of hair follicle stem cells against androgen alopecia by activating S100A8/Wnt/β-catenin signalling

Shaojun Chu , Lingling Jia , Yulong Li , Jiachao Xiong , Yulin Sun , Qin Zhou , Dexiang Du , Zihan Li , Xin Huang , Hua Jiang , Baojin Wu , Yufei Li

Clinical and Translational Medicine ›› 2025, Vol. 15 ›› Issue (1) : e70152

PDF
Clinical and Translational Medicine ›› 2025, Vol. 15 ›› Issue (1) : e70152 DOI: 10.1002/ctm2.70152
RESEARCH ARTICLE

Exosome-derived long non-coding RNA AC010789.1 modified by FTO and hnRNPA2B1 accelerates growth of hair follicle stem cells against androgen alopecia by activating S100A8/Wnt/β-catenin signalling

Author information +
History +
PDF

Abstract

•Long non-coding RNA (lncRNA) AC010789.1 was downregulated in hair follicle tissues from androgenic alopecia (AGA) and upregulated in hair follicle stem cells (HFSCs).

•LncRNA AC010789.1 promoted the proliferation and migration of HFSCs.

•FTO/hnRNPA2B1-mediated m6A modification of lncRNA AC010789.1 promoted HFSCs growth by activating S100A8/Wnt/β-catenin signalling.

•Exosome-derived AC010789.1 accelerated HFSCs proliferation.

Keywords

FTO / HFSCs / hnRNPA2B1 / lncRNA AC010789.1 / proliferation / S100A8

Cite this article

Download citation ▾
Shaojun Chu, Lingling Jia, Yulong Li, Jiachao Xiong, Yulin Sun, Qin Zhou, Dexiang Du, Zihan Li, Xin Huang, Hua Jiang, Baojin Wu, Yufei Li. Exosome-derived long non-coding RNA AC010789.1 modified by FTO and hnRNPA2B1 accelerates growth of hair follicle stem cells against androgen alopecia by activating S100A8/Wnt/β-catenin signalling. Clinical and Translational Medicine, 2025, 15(1): e70152 DOI:10.1002/ctm2.70152

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Piraccini BM, Alessandrini A. Androgenetic alopecia. G Ital Dermatol Venereol. 2014;149(1):15-24.

[2]

Devjani S, Ezemma O, Kelley KJ, et al. Androgenetic Alopecia: Therapy Update. Drugs. 2023;83(8):701-715.

[3]

Leirós GJ, Ceruti JM, Castellanos ML, et al. Androgens modify Wnt agonists/antagonists expression balance in dermal papilla cells preventing hair follicle stem cell differentiation in androgenetic alopecia. Mol Cell Endocrinol. 2017;439:26-34.

[4]

Hu XM, Li ZX, Zhang DY, et al. A systematic summary of survival and death signalling during the life of hair follicle stem cells. Stem Cell Res Ther. 2021;12(1):453.

[5]

Dong C, Du J, Yu Z, et al. Global research status and trends in hair follicle stem cells: a bibliometric analysis. Stem Cell Rev Rep. 2022;18(6):2002-2015.

[6]

Liu Y, Yang S, Zeng Y, et al. Dysregulated behaviour of hair follicle stem cells triggers alopecia and provides potential therapeutic targets. Exp Dermatol. 2022;31(7):986-992.

[7]

Ding Y, Chen Y, Yang X, et al. An integrative analysis of the lncRNA-miRNA-mRNA competitive endogenous RNA network reveals potential mechanisms in the murine hair follicle cycle. Front Genet. 2022;13:931797.

[8]

Qi S, Sheng Y, Hu R, et al. Genome-wide expression profiling of long non-coding RNAs and competing endogenous RNA networks in alopecia areata. Math Biosci Eng. 2020;18(1):696-711.

[9]

Lin BJ, Zhu JY, Ye J, et al. LncRNA-XIST promotes dermal papilla induced hair follicle regeneration by targeting miR-424 to activate hedgehog signaling. Cell Signal. 2020;72:109623.

[10]

Zhu N, Lin E, Zhang H, et al. LncRNA H19 Overexpression Activates Wnt Signaling to Maintain the Hair Follicle Regeneration Potential of Dermal Papilla Cells. Front Genet. 2020;11:694.

[11]

Lin BJ, Lin GY, Zhu JY, et al. LncRNA-PCAT1 maintains characteristics of dermal papilla cells and promotes hair follicle regeneration by regulating miR-329/Wnt10b axis. Exp Cell Res. 2020;394(1):112031.

[12]

Liu X, Zhang Y, Tang Y, et al. Long non-coding RNA AL136131.3 inhibits hair growth through mediating PPARγ in androgenetic alopecia. J Dermatol Sci. 2023;111(3):120-123.

[13]

Xiong J, Wu B, Hou Q, et al. Comprehensive analysis of lncRNA AC010789.1 delays androgenic alopecia progression by targeting microRNA-21 and the Wnt/β-Catenin signaling pathway in hair follicle stem cells. Front Genet. 2022;13:782750.

[14]

Jiang X, Liu B, Nie Z, et al. The role of m6A modification in the biological functions and diseases. Signal Transduct Target Ther. 2021;6(1):74.

[15]

Yu Y, Lu S, Jin H, et al. RNA N6-methyladenosine methylation and skin diseases. Autoimmunity. 2023;56(1):2167983.

[16]

Ran Y, Yan Z, Jiang B, et al. N6-methyladenosine functions and its role in skin cancer. Exp Dermatol. 2023;32(1):4-12.

[17]

Maldonado López AM, Ko EK, Huang S, et al. Mettl3-catalyzed m6A regulates histone modifier and modification expression in self-renewing somatic tissue. Sci Adv. 2023;9(35):eadg5234.

[18]

Mu H, Zhang T, Yang Y, et al. METTL3-mediated mRNA N6-methyladenosine is required for oocyte and follicle development in mice. Cell Death Dis. 2021;12(11):989.

[19]

Shang Z, Feng H, Xia L. The suppression effects of fat mass and obesity associated gene on the hair follicle-derived neural crest stem cells differentiating into melanocyte by N6-methyladenosine modifying microphthalmia-associated transcription factor. Int J Stem Cells. 2023;16(2):135-144.

[20]

Xian J, Shang M, Dai Y, et al. N6-methyladenosine-modified long non-coding RNA AGAP2-AS1 promotes psoriasis pathogenesis via miR-424-5p/AKT3 axis. J Dermatol Sci. 2022;105(1):27-36.

[21]

Chu S, Li Y, Wu B, et al. METTL3 promotes the growth and invasion of melanoma cells by regulating the lncRNA SNHG3/miR-330-5p axis. Cell Transplant. 2023;32:9636897231188300.

[22]

Si Y, Bai J, Wu J, et al. LncRNA PlncRNA 1 regulates proliferation and differentiation of hair follicle stem cells through TGF-β1-mediated Wnt/β-catenin signal pathway. Mol Med Rep. 2018;17(1):1191-1197.

[23]

Chen CL, Huang WY, Wang EHC, et al. Functional complexity of hair follicle stem cell niche and therapeutic targeting of niche dysfunction for hair regeneration. J Biomed Sci. 2020;27(1):43.

[24]

Ryu YC, Kim YR, Park J, et al. Pyruvate kinase M2 promotes hair regeneration by connecting metabolic and Wnt/β-Catenin signaling. Pharmaceutics. 2022;14(12):2774.

[25]

Wen M, Ying Y, Xiao X, et al. Ox40-Cre-mediated deletion of BRD4 reveals an unexpected phenotype of hair follicle stem cells in alopecia. JCI Insight. 2022;7(23):e164534.

[26]

Lin CL, Xu R, Yi JK, et al. Alkaline ceramidase 1 protects mice from premature hair loss by maintaining the homeostasis of hair follicle stem cells. Stem Cell Rep. 2017;9(5):1488-1500.

[27]

Wang Y, Wang R, Yao B, et al. TNF-α suppresses sweat gland differentiation of MSCs by reducing FTO-mediated m6A-demethylation of Nanog mRNA. Sci China Life Sci. 2020;63(1):80-91.

[28]

Zhou R, Wang Q, Zeng S, et al. METTL14-mediated N6-methyladenosine modification of Col17a1/Itgα6/Itgβ4 governs epidermal homeostasis. J Dermatol Sci. 2023;112(3):138-147.

[29]

Zhou R, Gao Y, Lv D, et al. METTL3 mediated m6A modification plays an oncogenic role in cutaneous squamous cell carcinoma by regulating ΔNp63. Biochem Biophys Res Commun. 2019;515(2):310-317.

[30]

Lee J, Wu Y, Harada BT, et al. N6 -methyladenosine modification of lncRNA Pvt1 governs epidermal stemness. EMBO J. 2021;40(8):e106276.

[31]

Petri BJ, Piell KM, South Whitt GC, et al. HNRNPA2B1 regulates tamoxifen-and fulvestrant-sensitivity and hallmarks of endocrine resistance in breast cancer cells. Cancer Lett. 2021;518:152-168.

[32]

Zheng R, Yu Y, Lv L, et al. m6A reader HNRNPA2B1 destabilization of ATG4B regulates autophagic activity, proliferation and olaparib sensitivity in breast cancer. Exp Cell Res. 2023;424(1):113487.

[33]

Gebhardt C, Németh J, Angel P, et al. S100A8 and S100A9 in inflammation and cancer. Biochem Pharmacol. 2006;72(11):1622-31.

[34]

Matsunaga Y, Hashimoto Y, Ishiko A. Stratum corneum levels of calprotectin proteins S100A8/A9 correlate with disease activity in psoriasis patients. J Dermatol. 2021;48(10):1518-1525.

[35]

Gebhardt C, Breitenbach U, Tuckermann JP, et al. Calgranulins S100A8 and S100A9 are negatively regulated by glucocorticoids in a c-Fos-dependent manner and overexpressed throughout skin carcinogenesis. Oncogene. 2002;21(27):4266-76.

[36]

Defrêne J, Berrazouane S, Esparza N, et al. Deletion of S100a8 and S100a9 Enhances Skin Hyperplasia and Promotes the Th17 Response in Imiquimod-Induced Psoriasis. J Immunol. 2021;206(3):505-514.

[37]

van den Bosch MH, Blom AB, Schelbergen RF, et al. Induction of Canonical Wnt Signaling by the Alarmins S100A8/A9 in Murine Knee Joints: Implications for Osteoarthritis. Arthritis Rheumatol. 2016;68(1):152-63.

[38]

Duan L, Wu R, Ye L, et al. S100A8 and S100A9 are associated with colorectal carcinoma progression and contribute to colorectal carcinoma cell survival and migration via Wnt/β-catenin pathway. PLoS One. 2013;8(4):e62092.

[39]

Rehman FU, Liu Y, Zheng M, et al. Exosomes based strategies for brain drug delivery. Biomaterials. 2023;293:121949.

[40]

Liu X, Zhang G, Yu T, et al. Exosomes deliver lncRNA DARS-AS1 siRNA to inhibit chronic unpredictable mild stress-induced TNBC metastasis. Cancer Lett. 2022;543:215781.

[41]

Guo Z, Li Y, Li W, et al. Exosome-mediated lncRNA LINC01140 attenuates breast cancer progression by regulating the Wnt/β-Catenin pathway. Crit Rev Eukaryot Gene Expr. 2023;33(7):31-42.

[42]

Wang G, Wang Z, Zhang J, et al. Treatment of androgenetic alopecia by exosomes secreted from hair papilla cells and the intervention effect of LTF. J Cosmet Dermatol. 2023;22(11):2996-3007.

[43]

Tang X, Cao C, Liang Y, et al. Adipose-derived stem cell exosomes antagonize the inhibitory effect of dihydrotestosterone on hair follicle growth by activating Wnt/β-Catenin pathway. Stem Cells Int. 2023;2023:5548112.

RIGHTS & PERMISSIONS

2025 The Author(s). Clinical and Translational Medicine published by John Wiley & Sons Australia, Ltd on behalf of Shanghai Institute of Clinical Bioinformatics.

AI Summary AI Mindmap
PDF

154

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/