Revealing the heterogeneity of treatment resistance in less-defined subtype diffuse large B cell lymphoma patients by integrating programmed cell death patterns and liquid biopsy

Wei Hua , Jie Liu , Yue Li , Hua Yin , Hao-Rui Shen , Jia-Zhu Wu , Yi-Lin Kong , Bi-Hui Pan , Jun-Heng Liang , Li Wang , Jian-Yong Li , Rui Gao , Jin-Hua Liang , Wei Xu

Clinical and Translational Medicine ›› 2025, Vol. 15 ›› Issue (1) : e70150

PDF
Clinical and Translational Medicine ›› 2025, Vol. 15 ›› Issue (1) : e70150 DOI: 10.1002/ctm2.70150
RESEARCH ARTICLE

Revealing the heterogeneity of treatment resistance in less-defined subtype diffuse large B cell lymphoma patients by integrating programmed cell death patterns and liquid biopsy

Author information +
History +
PDF

Abstract

•Developing the Programmed Cell Death Index (PCDI) utilizing multiple machine learning algorithms for patients with less-defined subtype diffuse large B-cell lymphoma.

•The difference in clinical characteristics, circulating tumour DNA burden and immune profiling between patients with distinct PCDI groups.

•A potentially effective regimen was speculated for patients with high PCDI scores who tend to exhibit worse progression-free survival.

Keywords

ctDNA / DLBCL / liquid biopsy / lymphoma microenvironment / machine learning / prognostic nomogram / programmed cell death

Cite this article

Download citation ▾
Wei Hua, Jie Liu, Yue Li, Hua Yin, Hao-Rui Shen, Jia-Zhu Wu, Yi-Lin Kong, Bi-Hui Pan, Jun-Heng Liang, Li Wang, Jian-Yong Li, Rui Gao, Jin-Hua Liang, Wei Xu. Revealing the heterogeneity of treatment resistance in less-defined subtype diffuse large B cell lymphoma patients by integrating programmed cell death patterns and liquid biopsy. Clinical and Translational Medicine, 2025, 15(1): e70150 DOI:10.1002/ctm2.70150

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wright GW, Huang DaW, Phelan JD, et al. A probabilistic classification tool for genetic subtypes of diffuse large B cell lymphoma with therapeutic implications. Cancer Cell. 2020;37(4):551-568.e14.

[2]

Sehn LH, Gascoyne RD. Diffuse large B-cell lymphoma: optimizing outcome in the context of clinical and biologic heterogeneity. Blood. 2015;125(1):22-32.

[3]

Zhang Mu-C, Tian S, Fu Di, et al. Genetic subtype-guided immunochemotherapy in diffuse large B cell lymphoma: the randomized GUIDANCE-01 trial. Cancer Cell. 2023;41(10):1705-1716.e5.

[4]

Peng Fu, Liao M, Qin R, et al. Regulated cell death (RCD) in cancer: key pathways and targeted therapies. Signal Transduct Target Ther. 2022;7(1):286.

[5]

Zheng X, Jin X, Ye F, et al. Ferroptosis: a novel regulated cell death participating in cellular stress response, radiotherapy, and immunotherapy. Exp Hematol Oncol. 2023;12(1):65.

[6]

Bedoui S, Herold MJ, Strasser A. Emerging connectivity of programmed cell death pathways and its physiological implications. Nat Rev Mol Cell Biol. 2020;21(11):678-695.

[7]

Painter D, Barrans S, Lacy S, et al. Cell-of-origin in diffuse large B-cell lymphoma: findings from the UK’s population-based Haematological Malignancy Research Network. Br J Haematol. 2019;185(4):781-784.

[8]

Sha C, Barrans S, Cucco F, et al. Molecular high-grade B-Cell lymphoma: defining a poor-risk group that requires different approaches to therapy. J Clin Oncol. 2019;37(3):202-212.

[9]

Zou Y, Xie J, Zheng S, et al. Leveraging diverse cell-death patterns to predict the prognosis and drug sensitivity of triple-negative breast cancer patients after surgery. Int J Surg. 2022;107:106936.

[10]

Zheng P, Zhou C, Ding Y, Duan S. Disulfidptosis: a new target for metabolic cancer therapy. J Exp Clin Cancer Res. 2023;42(1):103.

[11]

Wang X, Wang Z, Guo Z, Wang Z, Chen F, Wang Z. Exploring the role of different cell-death-related genes in sepsis diagnosis using a machine learning algorithm. Int J Mol Sci. 2023;24(19):14720.

[12]

Zhang Qu, Luo J, Wu S, et al. Prognostic and predictive impact of circulating tumor DNA in patients with advanced cancers treated with immune checkpoint blockade. Cancer Discov. 2020;10(12):1842-1853.

[13]

Hua W, Li Y, Yin H, et al. Analysis of CCND3 mutations in diffuse large B-cell lymphoma. Ann Hematol. Published online: June 18, 2024.

[14]

Narang S, Evensen NA, Saliba J, et al. NSD2 E1099K drives relapse in pediatric acute lymphoblastic leukemia by disrupting 3D chromatin organization. Genome Biol. 2023;24(1):64.

[15]

Jain P, Wang ML. Mantle cell lymphoma in 2022-A comprehensive update on molecular pathogenesis, risk stratification, clinical approach, and current and novel treatments. Am J Hematol. 2022;97(5):638-656.

[16]

Chen DS, Mellman I. Oncology meets immunology: the cancer-immunity cycle. Immunity. 2013;39(1):1-10.

[17]

Gilliland DG, Griffin JD. The roles of FLT3 in hematopoiesis and leukemia. Blood. 2002;100(5):1532-1542.

[18]

Michael IP, Saghafinia S, Hanahan D. A set of microRNAs coordinately controls tumorigenesis, invasion, and metastasis. Proc Natl Acad Sci U S A. 2019;116(48):24184-24195.

[19]

Raskov H, Orhan A, Christensen JP, Gögenur I. Cytotoxic CD8(+) T cells in cancer and cancer immunotherapy. Br J Cancer. 2021;124(2):359-367.

[20]

Kapoor I, Bodo J, Hill BT, Hsi ED, Almasan A. Targeting BCL-2 in B-cell malignancies and overcoming therapeutic resistance. Cell Death Dis. 2020;11(11):941.

[21]

Zhang H, Fredericks T, Xiong G, et al. Membrane associated collagen XIII promotes cancer metastasis and enhances anoikis resistance. Breast Cancer Res. 2018;20(1):116.

[22]

Chakravarti D, Ibeanu GC, Tano K, Mitra S. Cloning and expression in Escherichia coli of a human cDNA encoding the DNA repair protein N-methylpurine-DNA glycosylase. J Biol Chem. 1991;266(24):15710-15715.

[23]

Hedglin M, O’brien PJ. Human alkyladenine DNA glycosylase employs a processive search for DNA damage. Biochemistry. 2008;47(44):11434-11445.

[24]

Van Den Boom J, Wolter M, Kuick R, et al. Characterization of gene expression profiles associated with glioma progression using oligonucleotide-based microarray analysis and real-time reverse transcription-polymerase chain reaction. Am J Pathol. 2003;163(3):1033-1043.

[25]

Zhang Y, Xu J, Zhu X. A 63 signature genes prediction system is effective for glioblastoma prognosis. Int J Mol Med. 2018;41(4):2070-2078.

[26]

Chen C, Liu S, Jiang X, et al. Tumor mutation burden estimated by a 69-gene-panel is associated with overall survival in patients with diffuse large B-cell lymphoma. Exp Hematol Oncol. 2021;10(1):20.

[27]

Chalmers ZR, Connelly CF, Fabrizio D, et al. Analysis of 100, 000 human cancer genomes reveals the landscape of tumor mutational burden. Genome Med. 2017;9(1):34.

[28]

Chen Y, Wang Y, Luo H, et al. The frequency and inter-relationship of PD-L1 expression and tumour mutational burden across multiple types of advanced solid tumours in China. Exp Hematol Oncol. 2020;9:17.

[29]

Jia Z, Zhang J, Li Z, Ai L. Identification of ferroptosis-related genes associated with diffuse large B-cell lymphoma via bioinformatics and machine learning approaches. Int J Biol Macromol. 2024;282(Pt 3):137117.

[30]

Mohme M, Riethdorf S, Pantel K. Circulating and disseminated tumour cells-mechanisms of immune surveillance and escape. Nat Rev Clin Oncol. 2017;14(3):155-167.

[31]

Dustin ML. The immunological synapse. Cancer Immunol Res. 2014;2(11):1023-1033.

[32]

Garrido F, Cabrera T, Aptsiauri N. “Hard” and “soft” lesions underlying the HLA class I alterations in cancer cells: implications for immunotherapy. Int J Cancer. 2010;127(2):249-256.

[33]

Challa-Malladi M, Lieu YK, Califano O, et al. Combined genetic inactivation of β2-Microglobulin and CD58 reveals frequent escape from immune recognition in diffuse large B cell lymphoma. Cancer Cell. 2011;20(6):728-740.

[34]

Song Y, Malpica L, Cai Q, et al. Golidocitinib, a selective JAK1 tyrosine-kinase inhibitor, in patients with refractory or relapsed peripheral T-cell lymphoma (JACKPOT8 Part B): a single-arm, multinational, phase 2 study. Lancet Oncol. 2024;25(1):117-125.

[35]

Chen DS, Mellman I. Elements of cancer immunity and the cancer-immune set point. Nature. 2017;541(7637):321-330.

[36]

Zhang T, Liu H, Jiao L, et al. Genetic characteristics involving the PD-1/PD-L1/L2 and CD73/A2aR axes and the immunosuppressive microenvironment in DLBCL. J Immunother Cancer. 2022;10(4):e004114.

[37]

Zhang Q, Bi J, Zheng X, et al. Blockade of the checkpoint receptor TIGIT prevents NK cell exhaustion and elicits potent anti-tumor immunity. Nat Immunol. 2018;19(7):723-732.

RIGHTS & PERMISSIONS

2024 The Author(s). Clinical and Translational Medicine published by John Wiley & Sons Australia, Ltd on behalf of Shanghai Institute of Clinical Bioinformatics.

AI Summary AI Mindmap
PDF

142

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/