ZSH-2208: A novel retinoid with potent anti-tumour effects on ESCC stem cells via RARγ–TNFAIP3 axis

Ruoxue Chen , Xuan Huang , Jiayun Hou , Junjie Ni , Wenrui Zhao , Quanlin Li , Heng Jiao , Xin Cao

Clinical and Translational Medicine ›› 2025, Vol. 15 ›› Issue (1) : e70148

PDF
Clinical and Translational Medicine ›› 2025, Vol. 15 ›› Issue (1) : e70148 DOI: 10.1002/ctm2.70148
RESEARCH ARTICLE

ZSH-2208: A novel retinoid with potent anti-tumour effects on ESCC stem cells via RARγ–TNFAIP3 axis

Author information +
History +
PDF

Abstract

•The ESCC-TRCs replicates the characteristics of ESCC stem cells, which are inhibited by ZSH-2208.

•In vivo and in vitro experiments demonstrated that ZSH-2208, a novel RA analogue, effectively inhibits the growth of ESCC-TRCs through the RARγ–TNFAIP3 axis.

•Low levels of TNFIP3 protein may be associated with improved survival probability in ESCC patients.

Keywords

oesophageal squamous cell carcinoma / retinoid / retinoid acid receptor γ / TNFAIP3 / tumourrepopulating cells / ZSH-2208

Cite this article

Download citation ▾
Ruoxue Chen, Xuan Huang, Jiayun Hou, Junjie Ni, Wenrui Zhao, Quanlin Li, Heng Jiao, Xin Cao. ZSH-2208: A novel retinoid with potent anti-tumour effects on ESCC stem cells via RARγ–TNFAIP3 axis. Clinical and Translational Medicine, 2025, 15(1): e70148 DOI:10.1002/ctm2.70148

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Arnold M, Ferlay J, Henegouwen M, et al. Global burden of oesophageal and gastric cancer by histology and subsite in 2018. Gut; 69(9):1564-1571.

[2]

Chen W, Zheng R, Zhang S, et al. Cancer incidence and mortality in China, 2013. Cancer Lett. 2017;401.

[3]

Kano Y, Konno M, Kawamoto K, et al. Novel drug discovery system for cancer stem cells in human squamous cell carcinoma of the esophagus. Oncol Rep. 2014;31(3):1133-1138.

[4]

Visvader J, Lindeman G. Cancer stem cells: current status and evolving complexities. Cell Stem Cell. 2012;10(6):717-728.

[5]

Fong H, Hohenstein KA, Donovan PJ. Regulation of self-renewal and pluripotency by Sox2 in human embryonic stem cells. Stem Cells. 2008;26(8):1931-1938.

[6]

Gangemi RMR, Griffero F, Marubbi D, et al. SOX2 silencing in glioblastoma tumor-initiating cells causes stop of proliferation and loss of tumorigenicity. Stem Cells. 2010;27(1):40-48.

[7]

Tanoury ZA, Piskunov A, Rochette-Egly C. Vitamin A and retinoid signaling: genomic and nongenomic effects. Journal of Lipid Research. 2013;54(7):1761-1775.

[8]

Zhao W, Li S, Chen R, et al. RXR signaling targeted cancer therapy. The Innovation Life. 2023;1(1):100014.

[9]

Maire AL, Alvarez S, Shankaranarayanan P, et al. Retinoid receptors and therapeutic applications of RAR/RXR modulators[J]. Current Topics in Medicinal Chemistry. 2012;12(6):505-527.

[10]

Li N, Lu Y, Li D, et al. All-trans retinoic acid suppresses the angiopoietin-Tie2 pathway and inhibits angiogenesis and metastasis in esophageal squamous cell carcinoma. PLoS One. 2017;12(4):e0174555.

[11]

Xu XC, Liu X, Tahara E, et al. Expression and up-regulation of retinoic acid receptor-beta is associated with retinoid sensitivity and colony formation in esophageal cancer cell lines. Cancer Res. 1999;59(10):2477-2483.

[12]

Chen J, Cao X, An Q, et al. Inhibition of cancer stem cell like cells by a synthetic retinoid. Nat Commun. 2018;9(1):1406.

[13]

Xu XC, Liu X, Tahara E, et al. Expression and up-regulation of retinoic acid receptor-beta is associated with retinoid sensitivity and colony formation in esophageal cancer cell lines. Cancer Res. 1999;59(10):2477-2483.

[14]

Ajani JA, D’amico TA, Bentrem DJ, et al. Esophageal and esophagogastric junction cancers, Version 2.2019, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw. 2019;17(7):855-883.

[15]

Masi A, Leboffe L, De Marinis E, et al. Retinoic acid receptors: from molecular mechanisms to cancer therapy. Mol Aspects Med. 2015;41:1-115.

[16]

Masetti R, Vendemini F, Zama D, et al. All-trans retinoic acid in the treatment of pediatric acute promyelocytic leukemia[J]. Expert Rev Anticancer Ther. 2012;12(9):1191-1204.

[17]

Zuccari G, Carosio R, Fini A, et al. Modified polyvinylalcohol for encapsulation of all-trans-retinoic acid in polymeric micelles[J]. J Control Release. 2005;103(2):369-380.

[18]

Li W, Li Y, Li J, et al. All-trans-retinoic acid-adjuvanted mRNA vaccine induces mucosal anti-tumor immune responses for treating colorectal. Cancer Adv Sci. 2024;11(22):e2309770.

[19]

Li L, Zhu R, Zhou H, et al. All-trans retinoic acid promotes a tumor suppressive OTUD6B-β-TrCP-SNAIL axis in esophageal squamous cell carcinoma and enhances immunotherapy. Adv Sci. 2023;10(16):e2207458.

[20]

Lu TY, Li WC, Chen RY, et al. Inhibition effects of all trans-retinoic acid on the growth and angiogenesis of esophageal squamous cell carcinoma in nude mice. Chin Med J. 2011;124(17):2708-2714.

[21]

Schubert M, Gibert Y. Retinoids in embryonic development. Biomolecules. 2020;10(9):1278.

[22]

Huang X, Cao X. Innovative drugs bring continuous benefits to cancer patients. The Innovation Life. 2023;1(3):100043.

[23]

Brown G, Petrie K. The RARγ oncogene: an achilles heel for some cancers. Int J Mol Sci. 2021;22(7):3632.

[24]

Huang GL, Song W, Zhou P, et al. Oncogenic retinoic acid receptor γ knockdown reverses multi-drug resistance of human colorectal cancer via Wnt/β-catenin pathway. Cell Cycle. 2017;16(7):685-692.

[25]

Huang GL, Luo Q, Rui G, et al. Oncogenic activity of retinoic acid receptor γ is exhibited through activation of the Akt/NF-κB and Wnt/β-catenin pathways in cholangiocarcinoma. Mol Cell Biol. 2013;33(17):3416-3425.

[26]

Yan TD, Wu H, Zhang HP, et al. Oncogenic potential of retinoic acid receptor-gamma in hepatocellular carcinoma. Cancer Res. 2010;70(6):2285-2295.

[27]

Kudryavtseva AV, Nyushko KM, Zaretsky A, et al. Upregulation of Rarb, Rarg, and Rorc genes in clear cell renal cell carcinoma. Biomed Pharmacol J. 2016;9(3):967-975.

[28]

Shi Y, Wang X, Wang J, et al. The dual roles of A20 in cancer. Cancer Lett. 2021;511:26-35.

[29]

Lee E, Ouzounova M, Piranlioglu R, et al. The pleiotropic effects of TNFα in breast cancer subtypes is regulated by TNFAIP3/A20. Oncogene. 2019;38(4):469-482.

[30]

Wisnieski F, Santos LC, Calcagno DQ, et al. The impact of DNA demethylation on the upregulation of the NRN1 and TNFAIP3 genes associated with advanced gastric cancer. J Mol Med (Berl). 2020;98(5):707-717.

[31]

Du B, Liu M, Li C, et al. The potential role of TNFAIP3 in malignant transformation of gastric carcinoma. Pathol Res Pract. 2019;215(8):152471.

[32]

Martens A, Priem D, Hoste E, et al. Two distinct ubiquitin-binding motifs in A20 mediate its anti-inflammatory and cell-protective activities. Nat Immunol. 2020;21(4):381-387.

[33]

Han S, Wang Z, Liu J, et al. Identifying the p65-dependent effect of sulforaphene on esophageal squamous cell carcinoma progression via bioinformatics analysis. Int J Mol Sci. 2020;22(1):60.

RIGHTS & PERMISSIONS

2024 The Author(s). Clinical and Translational Medicine published by John Wiley & Sons Australia, Ltd on behalf of Shanghai Institute of Clinical Bioinformatics.

AI Summary AI Mindmap
PDF

135

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/