Enhancement of anti-sarcoma immunity by NK cells engineered with mRNA for expression of a EphA2-targeted CAR

Pui Yeng Lam , Natacha Omer , Josh K. M. Wong , Cui Tu , Louisa Alim , Gustavo R. Rossi , Maria Victorova , Hannah Tompkins , Cheng-Yu Lin , Ahmed M. Mehdi , Amos Choo , Melissa R. Elliott , Elaina Coleborn , Jane Sun , Timothy Mercer , Orazio Vittorio , Lachlan J. Dobson , Alexander D. McLellan , Andrew Brooks , Zewen Kelvin Tuong , Seth W. Cheetham , Wayne Nicholls , Fernando Souza-Fonseca-Guimaraes

Clinical and Translational Medicine ›› 2025, Vol. 15 ›› Issue (1) : e70140

PDF
Clinical and Translational Medicine ›› 2025, Vol. 15 ›› Issue (1) : e70140 DOI: 10.1002/ctm2.70140
RESEARCH ARTICLE

Enhancement of anti-sarcoma immunity by NK cells engineered with mRNA for expression of a EphA2-targeted CAR

Author information +
History +
PDF

Abstract

•Addressing unmet clinical needs in paediatric Sarcomas. Paediatric sarcomas, including rhabdomyosarcoma, Ewing sarcoma, and osteosarcoma, exhibit poor survival rates in advanced disease stages. The lack of significant therapeutic progress over the past three decades necessitates innovative treatment approaches.

•Advancing immunotherapy with CAR-NK cells. Natural killer (NK) cells modified with chimeric antigen receptors (CARs) represent a promising strategy to overcome the limitations of CAR-T cells, particularly in solid tumours. CAR-NK cells are associated with enhanced tumour targeting, reduced off-target effects, and improved safety profiles.

•EphA2 as a therapeutic target. EphA2, a receptor overexpressed in multiple paediatric sarcomas, is identified as a viable target for CAR-based immunotherapy due to its critical role in tumour progression and angiogenesis.

•Innovations in mRNA-based engineering. This study demonstrates the feasibility of transient mRNA transfection to engineer NK cells for CAR expression, offering a non-integrative and safer alternative to viral transduction. Enhancements in mRNA stability through chemical modifications, can further optimise protein expression.

•Preclinical efficacy of EphA2-CAR NK cells. EphA2-specific CAR-NK cells exhibit superior cytotoxicity against sarcoma cell lines in vitro and demonstrate significant anti-tumour activity in in vivo mouse models of rhabdomyosarcoma and osteosarcoma.

•Clinical translation potential. The findings establish a strong preclinical rationale for the clinical evaluation of EphA2-targeted CAR-NK therapy as a novel immunotherapeutic option for paediatric sarcomas.

•Future research directions: Combining EphA2-CAR NK cells with immune checkpoint inhibitors or other immunomodulatory agents could further enhance therapeutic outcomes and durability. Advanced preclinical models mimicking human tumour microenvironments are needed to refine and optimise this therapeutic approach.

Keywords

CAR-NK cell therapy / EphA2 / Ewing sarcoma / immunotherapy / osteosarcoma / paediatric sarcomas / rhabdomyosarcoma

Cite this article

Download citation ▾
Pui Yeng Lam, Natacha Omer, Josh K. M. Wong, Cui Tu, Louisa Alim, Gustavo R. Rossi, Maria Victorova, Hannah Tompkins, Cheng-Yu Lin, Ahmed M. Mehdi, Amos Choo, Melissa R. Elliott, Elaina Coleborn, Jane Sun, Timothy Mercer, Orazio Vittorio, Lachlan J. Dobson, Alexander D. McLellan, Andrew Brooks, Zewen Kelvin Tuong, Seth W. Cheetham, Wayne Nicholls, Fernando Souza-Fonseca-Guimaraes. Enhancement of anti-sarcoma immunity by NK cells engineered with mRNA for expression of a EphA2-targeted CAR. Clinical and Translational Medicine, 2025, 15(1): e70140 DOI:10.1002/ctm2.70140

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Lachota M, Vincenti M, Winiarska M, Boye K, Zagożdżon R, Malmberg K-J. Prospects for NK cell therapy of sarcoma. Cancers. 2020;12(12):3719.

[2]

Hernandez Tejada FN, Zamudio A, Marques-Piubelli ML, Cuglievan B, Harrison D. Advances in the management of pediatric sarcomas. Curr Oncol Rep. 2020;23(1):3.

[3]

Keegan TH, Ries LA, Barr RD, et al. Comparison of cancer survival trends in the United States of adolescents and young adults with those in children and older adults. Cancer. 2016;122(7):1009-1016.

[4]

Gill J, Gorlick R. Advancing therapy for osteosarcoma. Nat Rev Clin Oncol. 2021;18(10):609-624.

[5]

Riggi N, Suva ML, Stamenkovic I. Ewing’s sarcoma. N Engl J Med. 2021;384(2):154-164.

[6]

Chen C, Dorado Garcia H, Scheer M, Henssen AG. Current and future treatment strategies for rhabdomyosarcoma. Front Oncol. 2019;9:1458.

[7]

Lam PY, Souza-Fonseca-Guimaraes F. Highlight of 2023: unlocking the therapeutic potential of natural killer cells-advances in adaptive functions, cellular engineering and immunotherapy. Immunol Cell Biol. 2024;102(6):444-447.

[8]

Wong JKM, Dolcetti R, Rhee H, Simpson F, Souza-Fonseca-Guimaraes F. Weaponizing natural killer cells for solid cancer immunotherapy. Trends Cancer. 2023;9(2):111-121.

[9]

Cho D, Shook DR, Shimasaki N, Chang Y-H, Fujisaki H, Campana D. Cytotoxicity of activated natural killer cells against pediatric solid tumors. Clin Cancer Res. 2010;16(15):3901.

[10]

Ames E, Canter RJ, Grossenbacher SK, et al. NK cells preferentially target tumor cells with a cancer stem cell phenotype. J Immunol. 2015;195(8):4010-4019.

[11]

Stahl D, Gentles AJ, Thiele R, Gutgemann I. Prognostic profiling of the immune cell microenvironment in Ewing’s sarcoma family of tumors. Oncoimmunology. 2019;8(12):e1674113.

[12]

Yang X, Zhang W, Xu P. NK cell and macrophages confer prognosis and reflect immune status in osteosarcoma. J Cell Biochem. 2019;120(5):8792-8797.

[13]

Rademacher MJ, Cruz A, Faber M, et al. Sarcoma IL-12 overexpression facilitates NK cell immunomodulation. Sci Rep. 2021;11(1):8321.

[14]

Tong AA, Hashem H, Eid S, Allen F, Kingsley D, Huang AY. Adoptive natural killer cell therapy is effective in reducing pulmonary metastasis of Ewing sarcoma. Oncoimmunology. 2017;6(4):e1303586.

[15]

Chawla SP, Chua-Alcala VS, Gordon EM, et al. Interim analysis of a phase I study of SNK01 (autologous nongenetically modified natural killer cells with enhanced cytotoxicity) and avelumab in advanced refractory sarcoma. J Clin Oncol. 2022;40(suppl 16):11517.

[16]

Chawla SP, Kim KM, Chua VS, Jafari O, Song PY. Phase I study of SNK01 (autologous non-genetically modified natural killer cells with enhanced cytotoxicity) in refractory metastatic solid tumors. J Clin Oncol. 2020;38(suppl 15):e15024.

[17]

Omer N, Nicholls W, Ruegg B, Souza-Fonseca-Guimaraes F, Rossi GR. Enhancing natural killer cell targeting of pediatric sarcoma. Front Immunol. 2021;12:791206.

[18]

Myers JA, Miller JS. Exploring the NK cell platform for cancer immunotherapy. Nat Rev Clin Oncol. 2021;18(2):85-100.

[19]

Bellal M, Malherbe J, Damaj G, Du Cheyron D. Toxicities, intensive care management, and outcome of chimeric antigen receptor T cells in adults: an update. Crit Care. 2024;28(1):69.

[20]

Guzman G, Reed MR, Bielamowicz K, Koss B, Rodriguez A. CAR-T therapies in solid tumors: opportunities and challenges. Curr Oncol Rep. 2023;25(5):479-489.

[21]

Liu E, Marin D, Banerjee P, et al. Use of CAR-transduced natural killer cells in CD19-positive lymphoid tumors. N Engl J Med. 2020;382(6):545-553.

[22]

Xiao L, Cen D, Gan H, et al. Adoptive transfer of NKG2D CAR mRNA-engineered natural killer cells in colorectal cancer patients. Mol Ther. 2019;27(6):1114-1125.

[23]

Portillo AL, Hogg R, Poznanski SM, et al. Expanded human NK cells armed with CAR uncouple potent anti-tumor activity from off-tumor toxicity against solid tumors. iScience. 2021;24(6):102619.

[24]

Sheridan C. Industry appetite for natural killer cells intensifies. Nat Biotechnol. 2023;41(2):159-161.

[25]

Souza-Fonseca-Guimaraes F, Cursons J, Huntington ND. The emergence of natural killer cells as a major target in cancer immunotherapy. Trends Immunol. 2019;40(2):142-158.

[26]

Marin D, Li Y, Basar R, et al. Safety, efficacy and determinants of response of allogeneic CD19-specific CAR-NK cells in CD19(+) B cell tumors: a phase 1/2 trial. Nat Med. 2024;30(3):772-784.

[27]

Park H, Awasthi A, Ayello J, et al. ROR1-specific chimeric antigen receptor (CAR) NK cell immunotherapy for high risk neuroblastomas and sarcomas. Biol Blood Marrow Transplant. 2017;23(suppl 3):S136-S137.

[28]

Chang Y-H, Connolly J, Shimasaki N, Mimura K, Kono K, Campana D. A chimeric receptor with NKG2D specificity enhances natural killer cell activation and killing of tumor cells. Cancer Res. 2013;73(6):1777-1786.

[29]

Sutlu T, Nystrom S, Gilljam M, et al. Inhibition of intracellular antiviral defense mechanisms augments lentiviral transduction of human natural killer cells: implications for gene therapy. Hum Gene Ther. 2012;23(10):1090-1100.

[30]

Lin CY, Gobius I, Souza-Fonseca-Guimaraes F. Natural killer cell engineering-a new hope for cancer immunotherapy. Semin Hematol. 2020;57(4):194-200.

[31]

Gong Y, Klein Wolterink RGJ, Wang J, Bos GMJ, Germeraad WTV. Chimeric antigen receptor natural killer (CAR-NK) cell design and engineering for cancer therapy. J Hematol Oncol. 2021;14(1):73.

[32]

Verdun N, Marks P. Secondary cancers after chimeric antigen receptor T-cell therapy. N Engl J Med. 2024;390(7):584-586.

[33]

Raza A, Rossi GR, Janjua TI, Souza-Fonseca-Guimaraes F, Popat A. Nanobiomaterials to modulate natural killer cell responses for effective cancer immunotherapy. Trends Biotechnol. 2023;41(1):77-92.

[34]

Gargett T, Brown MP. The inducible caspase-9 suicide gene system as a “safety switch” to limit on-target, off-tumor toxicities of chimeric antigen receptor T cells. Front Pharmacol. 2014;5:235.

[35]

Jayaraman J, Mellody MP, Hou AJ, et al. CAR-T design: elements and their synergistic function. EBioMedicine. 2020;58:102931.

[36]

Sterner RC, Sterner RM. CAR-T cell therapy: current limitations and potential strategies. Blood Cancer J. 2021;11(4):69.

[37]

Giordano G, Merlini A, Ferrero G, et al. EphA2 expression in bone sarcomas: bioinformatic analyses and preclinical characterization in patient-derived models of osteosarcoma, Ewing’s sarcoma and chondrosarcoma. Cells. 2021;10(11):2893.

[38]

Xiao T, Xiao Y, Wang W, Tang YY, Xiao Z, Su M. Targeting EphA2 in cancer. J Hematol Oncol. 2020;13(1):114.

[39]

Garcia-Monclus S, Lopez-Alemany R, Almacellas-Rabaiget O, et al. EphA2 receptor is a key player in the metastatic onset of Ewing sarcoma. Int J Cancer. 2018;143(5):1188-1201.

[40]

Megiorni F, Gravina GL, Camero S, et al. Pharmacological targeting of the ephrin receptor kinase signalling by GLPG1790 in vitro and in vivo reverts oncophenotype, induces myogenic differentiation and radiosensitizes embryonal rhabdomyosarcoma cells. J Hematol Oncol. 2017;10(1):161.

[41]

Posthumadeboer J, Piersma SR, Pham TV, et al. Surface proteomic analysis of osteosarcoma identifies EPHA2 as receptor for targeted drug delivery. Br J Cancer. 2013;109(8):2142-2154.

[42]

Donovan LK, Delaidelli A, Joseph SK, et al. Locoregional delivery of CAR T cells to the cerebrospinal fluid for treatment of metastatic medulloblastoma and ependymoma. Nat Med. 2020;26(5):720-731.

[43]

Shi H, Yu F, Mao Y, et al. EphA2 chimeric antigen receptor-modified T cells for the immunotherapy of esophageal squamous cell carcinoma. J Thorac Disease. 2018;10(5):2779-2788.

[44]

Hsu K, Middlemiss S, Saletta F, Gottschalk S, McCowage GB, Kramer B. Chimeric antigen receptor-modified T cells targeting EphA2 for the immunotherapy of paediatric bone tumours. Cancer Gene Therapy. 2021;28(3):321-334.

[45]

Chow KKH, Naik S, Kakarla S, et al. T cells redirected to EphA2 for the immunotherapy of glioblastoma. Mol Therapy. 2013;21(3):629-637.

[46]

An Z, Hu Y, Bai Y, et al. Antitumor activity of the third generation EphA2 CAR-T cells against glioblastoma is associated with interferon gamma induced PD-L1. OncoImmunology. 2021;10(1):1960728.

[47]

Jacobs MT, Wong P, Zhou AY, et al. Memory-like differentiation, tumor-targeting mAbs, and chimeric antigen receptors enhance natural killer cell responses to head and neck cancer. Clin Cancer Res. 2023;29(20):4196-4208.

[48]

Dobson LJ, Saunderson SC, Smith-Bell SW, McLellan AD. Sleeping beauty kit sets provide rapid and accessible generation of artificial antigen-presenting cells for natural killer cell expansion. Immunol Cell Biol. 2023;101(9):847-856.

[49]

Damschroder MM, Widjaja L, Gill PS, et al. Framework shuffling of antibodies to reduce immunogenicity and manipulate functional and biophysical properties. Mol Immunol. 2007;44(11):3049-3060.

[50]

Goldgur Y, Susi P, Karelehto E, et al. Generation and characterization of a single-chain anti-EphA2 antibody. Growth Factors. 2014;32(6):214-222.

[51]

Geddie ML, Kohli N, Kirpotin DB, et al. Improving the developability of an anti-EphA2 single-chain variable fragment for nanoparticle targeting. MAbs. 2017;9(1):58-67.

[52]

Larson RC, Maus MV. Recent advances and discoveries in the mechanisms and functions of CAR T cells. Nat Rev Cancer. 2021;21(3):145-161.

[53]

Savoldo B, Ramos CA, Liu E, et al. CD28 costimulation improves expansion and persistence of chimeric antigen receptor-modified T cells in lymphoma patients. J Clin Invest. 2011;121(5):1822-1826.

[54]

Sabnis S, Kumarasinghe ES, Salerno T, et al. A novel amino lipid series for mRNA delivery: improved endosomal escape and sustained pharmacology and safety in non-human primates. Mol Ther. 2018;26(6):1509-1519.

[55]

Leighton LJ, Chaudhary N, Tompkins HT, et al. The design, manufacture and formulation of mRNA for research-use. Nat Methods. 2024.

[56]

Rossi GR, Goncalves JP, McCulloch T, et al. The antitumor effect of heparin is not mediated by direct NK cell activation. J Clin Med. 2020;9(8):2666.

[57]

Rossi GR, Sun J, Lin CY, et al. A scalable, spin-free approach to generate enhanced induced pluripotent stem cell-derived natural killer cells for cancer immunotherapy. Immunol Cell Biol. 2024;102(10):924-934.

[58]

Rautela J, Dagley LF, de Oliveira CC, et al. Therapeutic blockade of activin-a improves NK cell function and antitumor immunity. Sci Signal. 2019;12(596):eaat7527.

[59]

Missiaglia E, Williamson D, Chisholm J, et al. PAX3/FOXO1 fusion gene status is the key prognostic molecular marker in rhabdomyosarcoma and significantly improves current risk stratification. J Clin Oncol. 2012;30(14):1670-1677.

[60]

Wrobel L, Gudys A, Sikora M. Learning rule sets from survival data. BMC Bioinform. 2017;18(1):285.

[61]

Foroutan M, Bhuva DD, Lyu R, Horan K, Cursons J, Davis MJ. Single sample scoring of molecular phenotypes. BMC Bioinform. 2018;19(1):404.

[62]

Cursons J, Souza-Fonseca-Guimaraes F, Foroutan M, et al. A gene signature predicting natural killer cell infiltration and improved survival in melanoma patients. Cancer Immunol Res. 2019;7(7):1162-1174.

[63]

Cillo AR, Mukherjee E, Bailey NG, et al. Ewing sarcoma and osteosarcoma have distinct immune signatures and intercellular communication networks. Clin Cancer Res. 2022;28(22):4968-4982.

[64]

Netskar H, Pfefferle A, Goodridge JP, et al. Pan-cancer profiling of tumor-infiltrating natural killer cells through transcriptional reference mapping. Nat Immunol. 2024;25(8):1445-1459.

[65]

Qiu X, Liu Y, Shen H, et al. Single-cell RNA sequencing of human femoral head in vivo. Aging. 2021;13(11):15595-15619.

[66]

Polanski K, Young MD, Miao Z, Meyer KB, Teichmann SA, Park JE. BBKNN: fast batch alignment of single cell transcriptomes. Bioinformatics. 2020;36(3):964-965.

[67]

Wolf FA, Angerer P, Theis FJ. SCANPY: large-scale single-cell gene expression data analysis. Genome Biol. 2018;19(1):15.

[68]

Matsuda M, Ono R, Iyoda T, et al. Human NK cell development in hIL-7 and hIL-15 knockin NOD/SCID/IL2rgKO mice. Life Sci Alliance. 2019;2(2):e201800195.

[69]

Wong JKM, McCulloch TR, Alim L, et al. TGF-beta signalling limits effector function capacity of NK cell anti-tumour immunity in human bladder cancer. EBioMedicine. 2024;104:105176.

[70]

Strowig T, Gurer C, Ploss A, et al. Priming of protective T cell responses against virus-induced tumors in mice with human immune system components. J Exp Med. 2009;206(6):1423-1434.

[71]

Stewart E, Federico SM, Chen X, et al. Orthotopic patient-derived xenografts of paediatric solid tumours. Nature. 2017;549(7670):96-100.

[72]

Jenkins DE, Oei Y, Hornig YS, et al. Bioluminescent imaging (BLI) to improve and refine traditional murine models of tumor growth and metastasis. Clin Exp Metastasis. 2003;20(8):733-744.

[73]

Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B (Methodological). 1995;57:289-300.

[74]

Janes PW, Vail ME, Gan HK, Scott AM. Antibody targeting of Eph receptors in cancer. Pharmaceuticals (Basel). 2020;13(5):88.

[75]

Yi Z, Prinzing BL, Cao F, Gottschalk S, Krenciute G. Optimizing EphA2-CAR T cells for the adoptive immunotherapy of glioma. Mol Ther Methods Clin Dev. 2018;9:70-80.

[76]

Morais P, Adachi H, Yu YT. The critical contribution of pseudouridine to mRNA COVID-19 vaccines. Front Cell Dev Biol. 2021;9:789427.

[77]

Strzelecka D, Smietanski M, Sikorski PJ, Warminski M, Kowalska J, Jemielity J. Phosphodiester modifications in mRNA poly(A) tail prevent deadenylation without compromising protein expression. RNA. 2020;26(12):1815-1837.

[78]

Kawaguchi D, Kodama A, Abe N, et al. Phosphorothioate modification of mRNA accelerates the rate of translation initiation to provide more efficient protein synthesis. Angew Chem Int Ed Engl. 2020;59(40):17403-17407.

[79]

Klingemann H. The NK-92 cell line-30 years later: its impact on natural killer cell research and treatment of cancer. Cytotherapy. 2023;25(5):451-457.

[80]

Pfefferle A, Contet J, Wong K, et al. Optimisation of a primary human CAR-NK cell manufacturing pipeline. Clin Transl Immunol. 2024;13(5):e1507.

[81]

Wu J, Wu W, Zhou B, Li B. Chimeric antigen receptor therapy meets mRNA technology. Trends Biotechnol. 2024;42(2):228-240.

[82]

Nersesian S, Schwartz SL, Grantham SR, et al. NK cell infiltration is associated with improved overall survival in solid cancers: a systematic review and meta-analysis. Transl Oncol. 2021;14(1):100930.

[83]

Prinzing B, Schreiner P, Bell M, Fan Y, Krenciute G, Gottschalk S. MyD88/CD40 signaling retains CAR T cells in a less differentiated state. JCI Insight. 2020;5(21):e136093.

[84]

Hsu K, Middlemiss S, Saletta F, Gottschalk S, McCowage GB, Kramer B. Chimeric antigen receptor-modified T cells targeting EphA2 for the immunotherapy of paediatric bone tumours. Cancer Gene Ther. 2021;28(3-4):321-334.

[85]

Moscarelli J, Zahavi D, Maynard R, Weiner LM. The next generation of cellular immunotherapy: chimeric antigen receptor-natural killer cells. Transplant Cell Ther. 2022;28(10):650-656.

[86]

Tomasik J, Jasiński M, Basak GW. Next generations of CAR-T cells-new therapeutic opportunities in hematology? Front Immunol. 2022;13:1034707.

[87]

Oelsner S, Friede ME, Zhang CC, et al. Continuously expanding CAR NK-92 cells display selective cytotoxicity against B-cell leukemia and lymphoma. Cytotherapy. 2017;19(2):235-249.

[88]

Lang S, Vujanovic NL, Wollenberg B, Whiteside TL. Absence of B7.1-CD28/CTLA-4-mediated co-stimulation in human NK cells. Eur J Immunol. 1998;28(3):780-786.

[89]

Acharya S, Basar R, Daher M, et al. CD28 costimulation augments CAR signaling in NK cells via the LCK/CD3Z/ZAP70 signaling axis. Cancer Discov. 2024;14(10):1879-1900.

[90]

Coffman KT, Hu M, Carles-Kinch K, et al. Differential EphA2 epitope display on normal versus malignant cells. Cancer Res. 2003;63(22):7907-7912.

[91]

Boissel L, Betancur M, Lu W, et al. Comparison of mRNA and lentiviral based transfection of natural killer cells with chimeric antigen receptors recognizing lymphoid antigens. Leuk Lymphoma. 2012;53(5):958-965.

[92]

Oei VYS, Siernicka M, Graczyk-Jarzynka A. Intrinsic functional potential of NK-cell subsets constrains retargeting driven by chimeric antigen receptors. Cancer Immunol Res. 2018;6(4):467-480.

[93]

Chu Y, Hochberg J, Yahr A, et al. Targeting CD20+ aggressive B-cell non-Hodgkin lymphoma by anti-CD20 CAR mRNA-modified expanded natural killer cells in vitro and in NSG mice. Cancer Immunol Res. 2015;3(4):333-344.

RIGHTS & PERMISSIONS

2025 The Author(s). Clinical and Translational Medicine published by John Wiley & Sons Australia, Ltd on behalf of Shanghai Institute of Clinical Bioinformatics.

AI Summary AI Mindmap
PDF

129

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/