Nanopore adaptive sampling accurately detects nucleotide variants and improves the characterization of large-scale rearrangement for the diagnosis of cancer predisposition

Sandy Chevrier , Corentin Richard , Marie Mille , Denis Bertrand , Romain Boidot

Clinical and Translational Medicine ›› 2025, Vol. 15 ›› Issue (1) : e70138

PDF
Clinical and Translational Medicine ›› 2025, Vol. 15 ›› Issue (1) : e70138 DOI: 10.1002/ctm2.70138
RESEARCH ARTICLE

Nanopore adaptive sampling accurately detects nucleotide variants and improves the characterization of large-scale rearrangement for the diagnosis of cancer predisposition

Author information +
History +
PDF

Abstract

•Adaptive sampling is suitable for the analysis of germline alterations.

•Improves the characterization of Large Scale Rearrangement and detects SNV at a minimum coverage of 10x.

•Allows flexibility of sequencing.

Keywords

adaptive sampling / germline variants / large-scale rearrangements / single nucleotide variation

Cite this article

Download citation ▾
Sandy Chevrier, Corentin Richard, Marie Mille, Denis Bertrand, Romain Boidot. Nanopore adaptive sampling accurately detects nucleotide variants and improves the characterization of large-scale rearrangement for the diagnosis of cancer predisposition. Clinical and Translational Medicine, 2025, 15(1): e70138 DOI:10.1002/ctm2.70138

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

van Dijk EL, Jaszczyszyn Y, Naquin D, Thermes C, The third revolution in sequencing technology. Trends Genet. 2018;34(9):666-681.

[2]

Loose M, Malla S, Stout M, Real-time selective sequencing using nanopore technology. Nat Methods. 2016;13(9):751-754.

[3]

Mighton C, Lerner-Ellis JP, Principles of molecular testing for hereditary cancer. Genes Chromosomes Cancer. 2022;61(6):356-381.

[4]

Logsdon GA, Vollger MR, Eichler EE, Long-read human genome sequencing and its applications. Nat Rev Genet. 2020;21(10):597-614.

[5]

Begum G, Albanna A, Bankapur A, et al. Long-read sequencing improves the detection of structural variations impacting complex non-coding elements of the genome. Int J Mol Sci. 2021;22(4).

[6]

Conlin LK, Aref-Eshghi E, McEldrew DA, Luo M, Rajagopalan R, Long-read sequencing for molecular diagnostics in constitutional genetic disorders. Hum Mutat. 2022;43(11):1531-1544.

[7]

Li H, Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics. 2018;34(18):3094-3100.

[8]

Zheng Z, Li S, Su J, Leung AW, Lam TW, Luo R, Symphonizing pileup and full-alignment for deep learning-based long-read variant calling. Nat Comput Sci. 2022;2(12):797-803.

[9]

Tan A, Abecasis GR, Kang HM, Unified representation of genetic variants. Bioinformatics. 2015;31(13):2202-2204.

[10]

Hunt SE, Moore B, Amode RM, et al. Annotating and prioritizing genomic variants using the Ensembl variant effect predictor-a tutorial. Hum Mutat. 2022;43(8):986-997.

[11]

Landrum MJ, Lee JM, Benson M, et al. ClinVar: improving access to variant interpretations and supporting evidence. Nucleic Acids Res. 2018;46(D1):D1062-D1067.

[12]

Chen S, Francioli LC, Goodrich JK, et al. A genomic mutational constraint map using variation in 76, 156 human genomes. Nature. 2024;625(7993):92-100.

[13]

Amberger JS, Bocchini CA, Scott AF, Hamosh A, OMIM.org: leveraging knowledge across phenotype-gene relationships. Nucleic Acids Res. 2019;47(D1):D1038-D1043.

[14]

Richards S, Aziz N, Bale S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17(5):405-424.

[15]

Smolka M, Paulin LF, Grochowski CM, et al. Detection of mosaic and population-level structural variants with Sniffles2. Nat Biotechnol. 2024;42:1571-1580.

[16]

MacDonald JR, Ziman R, Yuen RK, Feuk L, Scherer SW, The Database of Genomic Variants: a curated collection of structural variation in the human genome. Nucleic Acids Res. 2014;42(Database issue):D986-992.

[17]

MedGen LoudenDN, : NCBI’s portal to information on medical conditions with a genetic component. Med Ref Serv Q. 2020;39(2):183-191.

[18]

Rehm HL, Berg JS, Brooks LD, et al. ClinGen-the Clinical Genome Resource. N Engl J Med. 2015;372(23):2235-2242.

[19]

Bragin E, Chatzimichali EA, Wright CF, et al. DECIPHER: database for the interpretation of phenotype-linked plausibly pathogenic sequence and copy-number variation. Nucleic Acids Res. 2014;42(Database issue):D993-D1000.

[20]

Collins RL, Brand H, Karczewski KJ, et al. A structural variation reference for medical and population genetics. Nature. 2020;581(7809):444-451.

[21]

Riggs ER, Andersen EF, Cherry AM, et al. Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med. 2020;22(2):245-257.

[22]

Crooks KR, Farwell Hagman KD, Mandelker D, et al. Recommendations for next-generation sequencing germline variant confirmation: a joint report of the Association for Molecular Pathology and National Society of Genetic Counselors. J Mol Diagn. 2023;25(7):411-427.

[23]

Filser M, Schwartz M, Merchadou K, et al. Adaptive nanopore sequencing to determine pathogenicity of BRCA1 exonic duplication. J Med Genet. 2023;60(12):1206-1209.

[24]

Xiao ZD, Liu X, Zhuang L, Gan B, NBR2: a former junk gene emerges as a key player in tumor suppression. Mol Cell Oncol. 2016;3(4):e1187322.

[25]

Nakamichi K, Stacey A, Mustafi D, Targeted long-read sequencing allows for rapid identification of pathogenic disease-causing variants in retinoblastoma. Ophthalmic Genet. 2022;43(6):762-770.

[26]

Walker S, Lamoureux S, Khan T, et al. Genome sequencing for detection of pathogenic deep intronic variation: a clinical case report illustrating opportunities and challenges. Am J Med Genet A. 2021;185(10):3129-3135.

[27]

Dirix M, Gribouval O, Arrondel C, et al. Overcoming the challenges associated with identification of deep intronic variants by whole genome sequencing. Clin Genet. 2023;103(6):693-698.

[28]

Cummings BB, Marshall JL, Tukiainen T, et al. Improving genetic diagnosis in Mendelian disease with transcriptome sequencing. Sci Transl Med. 2017;9(386):eaal5209.

[29]

Chorin O, Yachelevich N, Mohamed K, et al. Transcriptome sequencing identifies a noncoding, deep intronic variant in CLCN7 causing autosomal recessive osteopetrosis. Mol Genet Genomic Med. 2020;8(10):e1405.

[30]

Vaz-Drago R, Custodio N, Carmo-Fonseca M, Deep intronic mutations and human disease. Hum Genet. 2017;136(9):1093-1111.

[31]

Senju C, Nakazawa Y, Oso T, et al. Deep intronic founder mutations identified in the ERCC4/XPF gene are potential therapeutic targets for a high-frequency form of xeroderma pigmentosum. Proc Natl Acad Sci USA. 2023;120(27):e2217423120.

[32]

Simpson JT, Workman RE, Zuzarte PC, David M, Dursi LJ, Timp W, Detecting DNA cytosine methylation using nanopore sequencing. Nat Methods. 2017;14(4):407-410.

[33]

Fernandez JA, Patnaik MM, Germline abnormalities in DNA methylation and histone modification and associated cancer risk. Curr Hematol Malig Rep. 2022;17(4):82-93.

[34]

Joo JE, Dowty JG, Milne RL, et al. Heritable DNA methylation marks associated with susceptibility to breast cancer. Nat Commun. 2018;9(1):867.

[35]

Torkamani A, Wineinger NE, Topol EJ, The personal and clinical utility of polygenic risk scores. Nat Rev Genet. 2018;19(9):581-590.

[36]

Lewis CM, Vassos E, Polygenic risk scores: from research tools to clinical instruments. Genome Med. 2020;12(1):44.

[37]

Hao L, Kraft P, Berriz GF, et al. Development of a clinical polygenic risk score assay and reporting workflow. Nat Med. 2022;28(5):1006-1013.

[38]

Nakamura W, Hirata M, Oda S, et al. Assessing the efficacy of target adaptive sampling long-read sequencing through hereditary cancer patient genomes. NPJ Genom Med. 2024;9(1):11.

RIGHTS & PERMISSIONS

2025 The Author(s). Clinical and Translational Medicine published by John Wiley & Sons Australia, Ltd on behalf of Shanghai Institute of Clinical Bioinformatics.

AI Summary AI Mindmap
PDF

116

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/