Intestinal oxygen utilisation and cellular adaptation during intestinal ischaemia–reperfusion injury

Paraschos Archontakis-Barakakis , Theodoros Mavridis , David-Dimitris Chlorogiannis , Georgios Barakakis , Eleni Laou , Daniel I. Sessler , George Gkiokas , Athanasios Chalkias

Clinical and Translational Medicine ›› 2025, Vol. 15 ›› Issue (1) : e70136

PDF
Clinical and Translational Medicine ›› 2025, Vol. 15 ›› Issue (1) : e70136 DOI: 10.1002/ctm2.70136
REVIEW

Intestinal oxygen utilisation and cellular adaptation during intestinal ischaemia–reperfusion injury

Author information +
History +
PDF

Abstract

•During intestinal ischaemia, mitochondrial oxygen uptake is reduced when cellular oxygen partial pressure decreases to below the threshold required to maintain normal oxidative metabolism.

•Upon reperfusion, intestinal hypoxia may persist because microcirculatory flow remains impaired and/or because available oxygen is consumed by enzymes, intestinal cells and neutrophils.

Keywords

dysoxia / hypoxia / intestine / ischaemia–reperfusion injury / oxygen

Cite this article

Download citation ▾
Paraschos Archontakis-Barakakis, Theodoros Mavridis, David-Dimitris Chlorogiannis, Georgios Barakakis, Eleni Laou, Daniel I. Sessler, George Gkiokas, Athanasios Chalkias. Intestinal oxygen utilisation and cellular adaptation during intestinal ischaemia–reperfusion injury. Clinical and Translational Medicine, 2025, 15(1): e70136 DOI:10.1002/ctm2.70136

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Kalogeris T, Baines CP, Krenz M, Korthuis RJ. ischemia/reperfusion. Compr Physiol. 2016;7:113-170.

[2]

Zhao W, Gan X, Su G, et al. The interaction between oxidative stress and mast cell activation plays a role in acute lung injuries induced by intestinal ischemia-reperfusion. J Surg Res. 2014;187:542-552.

[3]

Chiu CJ, McArdle AH, Brown R, Scott HJ, Gurd FN. Intestinal mucosal lesion in low-flow states. I. A morphological, hemodynamic, and metabolic reappraisal. Arch Surg. 1970;101:478-483.

[4]

Park PO, Haglund U, Bulkley GB, Falt K. The sequence of development of intestinal tissue injury after strangulation ischemia and reperfusion. Surgery. 1990;107:574-580.

[5]

Parks DA, Granger DN. Contributions of ischemia and reperfusion to mucosal lesion formation. Am J Physiol. 1986;250:G749-53.

[6]

Robinson JW, Mirkovitch V, Winistorfer B, Saegesser F. Response of the intestinal mucosa to ischaemia. Gut. 1981;22:512-527.

[7]

Matheson PJ, Wilson MA, Garrison RN. Regulation of intestinal blood flow. J Surg Res. 2000;93:182-196.

[8]

Vatner SF, Franklin D, Van Citters RL. Mesenteric vasoactivity associated with eating and digestion in the conscious dog. Am J Physiol. 1970;219:170-174.

[9]

Chou TC, Rideout D, Chou J, Bertino JR. Chemotherapeutic synergism, potentiation and antagonism. In: Dulbecco R San Diego, eds. Encyclopedia of human biology. Academic Press; 1991:371-379. vol.

[10]

Ellsworth ML, Pittman RN. Arterioles supply oxygen to capillaries by diffusion as well as by convection. Am J Physiol. 1990;258:H1240-H1243.

[11]

Shonat RD, Johnson PC. Oxygen tension gradients and heterogeneity in venous microcirculation: a phosphorescence quenching study. Am J Physiol. 1997;272:H2233-H2240.

[12]

He G, Shankar RA, Chzhan M, Samouilov A, Kuppusamy P, Zweier JL. Noninvasive measurement of anatomic structure and intraluminal oxygenation in the gastrointestinal tract of living mice with spatial and spectral EPR imaging. Proc Natl Acad Sci USA. 1999;96:4586-4591.

[13]

Ortiz-Prado E, Dunn JF, Vasconez J, Castillo D, Viscor G. Partial pressure of oxygen in the human body: a general review. Am J Blood Res. 2019;9:1-14.

[14]

Colgan SP, Campbell EL, Kominsky DJ. Hypoxia and mucosal inflammation. Annu Rev Pathol. 2016;11:77-100.

[15]

Robinson A, Keely S, Karhausen J, Gerich ME, Furuta GT, Colgan SP. Mucosal protection by hypoxia-inducible factor prolyl hydroxylase inhibition. Gastroenterology. 2008;134:145-155.

[16]

Taylor CT, Colgan SP. Hypoxia and gastrointestinal disease. J Mol Med (Berl). 2007;85:1295-1300.

[17]

Shepherd AP. Local control of intestinal oxygenation and blood flow. Annu Rev Physiol. 1982;44:13-27.

[18]

Aharinejad S, Lametschwandtner A, Franz P, Firbas W. The vascularization of the digestive tract studied by scanning electron microscopy with special emphasis on the teeth, esophagus, stomach, small and large intestine, pancreas, and liver. Scanning Microsc. 1991;5:811-849.

[19]

Bellamy JE, Latshaw WK, Nielsen NO. The vascular architecture of the porcine small intestine. Can J Comp Med. 1973;37:56-62.

[20]

Zheng L, Kelly CJ, Colgan SP. Physiologic hypoxia and oxygen homeostasis in the healthy intestine. A review in the theme: cellular responses to hypoxia. Am J Physiol Cell Physiol. 2015;309:C350-60.

[21]

Schaible B, Schaffer K, Taylor CT. Hypoxia, innate immunity and infection in the lung. Respir Physiol Neurobiol. 2010;174:235-243.

[22]

Albenberg L, Esipova TV, Judge CP, et al. Correlation between intraluminal oxygen gradient and radial partitioning of intestinal microbiota. Gastroenterology. 2014;147:1055-1063.e8.

[23]

Karhausen J, Furuta GT, Tomaszewski JE, Johnson RS, Colgan SP, Haase VH. Epithelial hypoxia-inducible factor-1 is protective in murine experimental colitis. J Clin Invest. 2004;114:1098-1106.

[24]

Karhausen J, Ibla JC, Colgan SP. Implications of hypoxia on mucosal barrier function. Cell Mol Biol (Noisy-le-grand). 2003;49:77-87.

[25]

Shepherd AP. Metabolic control of intestinal oxygenation and blood flow. Fed Proc. 1982;41:2084-2089.

[26]

Sommer F, Anderson JM, Bharti R, Raes J, Rosenstiel P. The resilience of the intestinal microbiota influences health and disease. Nat Rev Microbiol. 2017;15:630-638.

[27]

Tap J, Mondot S, Levenez F, et al. Towards the human intestinal microbiota phylogenetic core. Environ Microbiol. 2009;11:2574-2584.

[28]

Eckburg PB, Bik EM, Bernstein CN, et al. Diversity of the human intestinal microbial flora. Science. 2005;308:1635-1638.

[29]

Granger DN, Korthuis RJ. Physiologic mechanisms of postischemic tissue injury. Annu Rev Physiol. 1995;57:311-332.

[30]

Yasuhara H. Acute mesenteric ischemia: the challenge of gastroenterology. Surg Today. 2005;35:185-195.

[31]

Chou EL, Wang LJ, McLellan RM, et al. Evolution in the presentation, treatment, and outcomes of patients with acute mesenteric ischemia. Ann Vasc Surg. 2021;74:53-62.

[32]

Acosta S. Epidemiology of mesenteric vascular disease: clinical implications. Semin Vasc Surg. 2010;23:4-8.

[33]

Boley SJ, Treiber W, Winslow PR, Gliedman ML, Veith FJ. Circulatory responses to acute reduction of superior mesenteric arterial flow. Physiologist. 1969;12:180.

[34]

Meyers MA. Griffiths’ point: critical anastomosis at the splenic flexure. Significance in ischemia of the colon. AJR Am J Roentgenol. 1976;126:77-94.

[35]

Mallick IH, Yang W, Winslet MC, Seifalian AM. Ischemia-reperfusion injury of the intestine and protective strategies against injury. Dig Dis Sci. 2004;49:1359-1377.

[36]

Sastry P, Hardman G, Page A, et al. Mesenteric ischaemia following cardiac surgery: the influence of intraoperative perfusion parameters. Interact Cardiovasc Thorac Surg. 2014;19:419-424.

[37]

Corcos O, Nuzzo A. Gastro-intestinal vascular emergencies. Best Pract Res Clin Gastroenterol. 2013;27:709-725.

[38]

Fishman JE, Sheth SU, Levy G, et al. Intraluminal nonbacterial intestinal components control gut and lung injury after trauma hemorrhagic shock. Ann Surg. 2014;260:1112-1120.

[39]

Davidson MT, Deitch EA, Lu Q, et al. Trauma-hemorrhagic shock mesenteric lymph induces endothelial apoptosis that involves both caspase-dependent and caspase-independent mechanisms. Ann Surg. 2004;240:123-131.

[40]

Brandt LJ, Feuerstadt P, Longstreth GF, Boley SJ. American College of Gastroenterology. ACG clinical guideline: epidemiology, risk factors, patterns of presentation, diagnosis, and management of colon ischemia (CI). Am J Gastroenterol. 2015;110:18-44. quiz 45.

[41]

Darien BJ, Sims PA, Stone WC, Schilly DR, Dubielzig RR, Albrecht RM. Ischemia/reperfusion injury of the ascending colon in ponies: a correlative study utilizing microvascular histopathology and corrosion casting. Scanning Microsc. 1993;7:1311-1319. discussion 1320.

[42]

American Gastroenterological Association Medical Position Statement: guidelines on intestinal ischemia. Gastroenterology 2000;118:951-953.

[43]

Chalkias A. Shear stress and endothelial mechanotransduction in trauma patients with hemorrhagic shock: hidden coagulopathy pathways and novel therapeutic strategies. Int J Mol Sci. 2023;24:17522.

[44]

Norsa L, Valle C, Morotti D, Bonaffini PA, Indriolo A, Sonzogni A. Intestinal ischemia in the COVID-19 era. Dig Liver Dis. 2020;52:1090-1091.

[45]

Koster MJ, Warrington KJ. Vasculitis of the mesenteric circulation. Best Pract Res Clin Gastroenterol. 2017;31:85-96.

[46]

Dai W, Bian S, Zhang J, et al. Research progress of intestinal hypoxia models in animals. Acta Vet Zootechn Sin. 2023;54:4083-4094.

[47]

Gonzalez LM, Moeser AJ, Blikslager AT. Animal models of ischemia-reperfusion-induced intestinal injury: progress and promise for translational research. Am J Physiol Gastrointest Liver Physiol. 2015;308:G63-75.

[48]

Khadaroo RG, Churchill TA, Tso V, Madsen KL, Lukowski C, Salim SY. Metabolomic profiling to characterize acute intestinal ischemia/reperfusion injury. PLoS One. 2017;12:e0179326.

[49]

Dubin A, Murias G, Estenssoro E, et al. Intramucosal-arterial PCO2 gap fails to reflect intestinal dysoxia in hypoxic hypoxia. Crit Care. 2002;6:514-520.

[50]

Niu Q, Liu F, Zhang J, Yang X, Wang X. Carbon monoxide-releasing molecule-2 protects intestinal mucosal barrier function by reducing epithelial tight-junction damage in rats undergoing cardiopulmonary resuscitation. J Intensive Med. 2022;2:118-126.

[51]

Niu Q, Du F, Yang X, Yang X, Wang X. Carbon monoxide-releasing molecule 2 inhibits inflammation associated with intestinal ischemia-reperfusion injury in a rat model of hemorrhagic shock. Int Immunopharmacol. 2022;113:109441.

[52]

Deng F, Hu JJ, Yang X, et al. Gut microbial metabolite pravastatin attenuates intestinal ischemia/reperfusion injury through promoting IL-13 release from type II innate lymphoid cells via IL-33/ST2 signaling. Front Immunol. 2021;12:704836.

[53]

Guo J, Lou X, Gong W, et al. The effects of different stress on intestinal mucosal barrier and intestinal microecology were discussed based on three typical animal models. Front Cell Infect Microbiol. 2022;12:953474.

[54]

Deng F, Lin ZB, Sun QS, et al. The role of intestinal microbiota and its metabolites in intestinal and extraintestinal organ injury induced by intestinal ischemia reperfusion injury. Int J Biol Sci. 2022;18:3981-3992.

[55]

Deng F, Zhao BC, Yang X, et al. The gut microbiota metabolite capsiate promotes Gpx4 expression by activating TRPV1 to inhibit intestinal ischemia reperfusion-induced ferroptosis. Gut Microbes. 2021;13:1-21.

[56]

Tian Y, Shu R, Lei Y, Xu Y, Zhang X, Luo H. Somatostatin attenuates intestinal epithelial barrier injury during acute intestinal ischemia-reperfusion through Tollip/Myeloiddifferentiationfactor 88/Nuclear factor kappa-B signaling. Bioengineered. 2022;13:5005-5020.

[57]

Murthy S, Hui-Qi Q, Sakai T, Depace DE. Fondacaro JD. Ischemia/reperfusion injury in the rat colon. Inflammation. 1997;21:173-190.

[58]

Ji AL, Li T, Zu G, et al. Ubiquitin-specific protease 22 enhances intestinal cell proliferation and tissue regeneration after intestinal ischemia reperfusion injury. World J Gastroenterol. 2019;25:824-836.

[59]

Gao Y, Zhang H, Wang Y, et al. L-cysteine alleviates myenteric neuron injury induced by intestinal ischemia/reperfusion via inhibitin the macrophage NLRP3-IL-1β pathway. Front Pharmacol. 2022;13:899169.

[60]

Liu C, Ding R, Huang W, Miao L, Li J, Li Y. Sevoflurane protects against intestinal ischemia-reperfusion injury by activating peroxisome proliferator-activated receptor gamma/nuclear factor-κB pathway in rats. Pharmacology. 2020;105:231-242.

[61]

Parlar A, Arslan SO. Resveratrol normalizes the deterioration of smooth muscle contractility after intestinal ischemia and reperfusion in rats associated with an antioxidative effect and modulating tumor necrosis factor alpha activity. Ann Vasc Surg. 2019;61:416-426.

[62]

Liu C, Shen Z, Liu Y, et al. Sevoflurane protects against intestinal ischemia-reperfusion injury partly by phosphatidylinositol 3 kinases/Akt pathway in rats. Surgery. 2015;157:924-933.

[63]

Turan I, Ozacmak HS, Ozacmak VH, Barut F, Araslı M. Agmatine attenuates intestinal ischemia and reperfusion injury by reducing oxidative stress and inflammatory reaction in rats. Life Sci. 2017;189:23-28.

[64]

Sayhan MB, Oguz S, Salt Ö, Can N, Ozgurtas T, Yalta TD. Sesamin ameliorates mucosal tissue injury of mesenteric ischemia and reperfusion in an experimental rat model. Arch Med Sci. 2019;15:1582-1588.

[65]

Ansari FA, Khan AA, Mahmood R. Protective effect of carnosine and N-acetylcysteine against sodium nitrite-induced oxidative stress and DNA damage in rat intestine. Environ Sci Pollut Res Int. 2018;25:19380-19392.

[66]

Khatun F, Aizu Y, Nishidate I. Transcutaneous monitoring of hemoglobin derivatives during methemoglobinemia in rats using spectral diffuse reflectance. J Biomed Opt. 2021;26.

[67]

Wan Z, Zhang X, Jia X, et al. Lactobacillus johnsonii YH1136 plays a protective role against endogenous pathogenic bacteria induced intestinal dysfunction by reconstructing gut microbiota in mice exposed at high altitude. Front Immunol. 2022;13:1007737.

[68]

Bai X, Liu G, Yang J, et al. Changes in the gut microbiota of rats in high-altitude hypoxic environments. Microbiol Spectr. 2022;10:e0162622.

[69]

Luo H, Guo P, Zhou Q. Role of TLR4/NF-κB in damage to intestinal mucosa barrier function and bacterial translocation in rats exposed to hypoxia. PLoS One. 2012;7:e46291.

[70]

Ji Q, Zhang Y, Zhou Y, et al. Effects of hypoxic exposure on immune responses of intestinal mucosa to Citrobacter colitis in mice. Biomed Pharmacother. 2020;129:110477.

[71]

Gao HN, Ren FZ, Wen PC, et al. Yak milk-derived exosomal microRNAs regulate intestinal epithelial cells on proliferation in hypoxic environment. J Dairy Sci. 2021;104:1291-1303.

[72]

Muenchau S, Deutsch R, de Castro IJ, et al. Hypoxic environment promotes barrier formation in human intestinal epithelial cells through regulation of microRNA 320a expression. Mol Cell Biol. 2019;39.

[73]

Li Y, Feng D, Wang Z, et al. Ischemia-induced ACSL4 activation contributes to ferroptosis-mediated tissue injury in intestinal ischemia/reperfusion. Cell Death Differ. 2019;26:2284-2299.

[74]

Fachi JL, Pral LP, Dos Santos JAC, et al. Hypoxia enhances ILC3 responses through HIF-1α-dependent mechanism. Mucosal Immunol. 2021;14:828-841.

[75]

Xie L, Collins JF. Transcription factors Sp1 and Hif2α mediate induction of the copper-transporting ATPase (Atp7a) gene in intestinal epithelial cells during hypoxia. J Biol Chem. 2013;288:23943-23952.

[76]

Luo H, Hu S, Bian H, et al. Protective effects of valproic acid on gut barrier function after major burn injury and its mechanism]. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 2017;29:221-227.

[77]

Basavaraju AM, Shivanna N, Yadavalli C, Garlapati PK, Raghavan AK. Ameliorative effect of ananas comosus on cobalt chloride-induced hypoxia in caco2 cells via HIF-1α GLUT 1, VEGF, ANG and FGF. Biol Trace Elem Res. 2021;199:1345-1355.

[78]

Boncler M, Lukasiak M, Dastych J, Golanski J, Watala C. Differentiated mitochondrial function in mouse 3T3 fibroblasts and human epithelial or endothelial cells in response to chemical exposure. Basic Clin Pharmacol Toxicol. 2019;124:199-210.

[79]

DiGuilio KM, Valenzano MC, Rybakovsky E, Mullin JM. Cobalt chloride compromises transepithelial barrier properties of CaCo-2 BBe human gastrointestinal epithelial cell layers. BMC Gastroenterol. 2018;18:2.

[80]

Liu Y, Wang C, Wang Y, et al. Cobalt chloride decreases fibroblast growth factor-21 expression dependent on oxidative stress but not hypoxia-inducible factor in Caco-2 cells. Toxicol Appl Pharmacol. 2012;264:212-221.

[81]

Dong B, Song W, Kong X, Zhang N, Lin W. Visualizing cellular sodium hydrosulfite (Na2S2O4) using azo-based fluorescent probes with a high signal-to-noise ratio. J Mater Chem B. 2019;7:730-733.

[82]

Tian Y, Li Y, Wang WX, Jiang WL, Fei J, Li CY. Novel strategy for validating the existence and mechanism of the “gut-liver axis” in vivo by a hypoxia-sensitive nir fluorescent probe. Anal Chem. 2020;92:4244-4250.

[83]

Khong TL, Thairu N, Larsen H, Dawson PM, Kiriakidis S, Paleolog EM. Identification of the angiogenic gene signature induced by EGF and hypoxia in colorectal cancer. BMC Cancer. 2013;13:518.

[84]

Cummins EP, Seeballuck F, Keely SJ, et al. The hydroxylase inhibitor dimethyloxalylglycine is protective in a murine model of colitis. Gastroenterology. 2008;134:156-165.

[85]

Dengler F, Gäbel G. The fast lane of hypoxic adaptation: glucose transport is modulated via a HIF-hydroxylase-AMPK-axis in jejunum epithelium. Int J Mol Sci. 2019;20:4993.

[86]

Zeitouni NE, Dersch P, Naim HY, von Köckritz-Blickwede M. Hypoxia decreases invasin-mediated yersinia enterocolitica internalization into caco-2 cells. PLoS One. 2016;11:e0146103.

[87]

Hill DR, Huang S, Nagy MS, et al. Bacterial colonization stimulates a complex physiological response in the immature human intestinal epithelium. Elife. 2017;6:e29132.

[88]

Kip AM, Soons Z, Mohren R, et al. Proteomics analysis of human intestinal organoids during hypoxia and reoxygenation as a model to study ischemia-reperfusion injury. Cell Death Dis. 2021;12:95.

[89]

Kip AM, Grootjans J, Manca M, et al. Temporal transcript profiling identifies a role for unfolded protein stress in human gut ischemia-reperfusion injury. Cell Mol Gastroenterol Hepatol. 2022;13:681-694.

[90]

de Lange IH, van Gorp C, Massy KRI, et al. Hypoxia-driven changes in a human intestinal organoid model and the protective effects of hydrolyzed whey. Nutrients. 2023;15:393.

[91]

Walaas GA, Gopalakrishnan S, Bakke I, et al. Physiological hypoxia improves growth and functional differentiation of human intestinal epithelial organoids. Front Immunol. 2023;14:1095812.

[92]

Koike Y, Li B, Lee C, et al. The intestinal injury caused by ischemia-reperfusion is attenuated by amniotic fluid stem cells via the release of tumor necrosis factor-stimulated gene 6 protein. FASEB J. 2020;34:6824-6836.

[93]

Filez L, Stalmans W, Penninckx F, Kerremans R. Influences of ischemia and reperfusion on the feline small-intestinal mucosa. J Surg Res. 1990;49:157-163.

[94]

Kim MY, Suh CH, Kim ST, et al. Magnetic resonance imaging of bowel ischemia induced by ligation of superior mesenteric artery and vein in a cat model. J Comput Assist Tomogr. 2004;28:187-192.

[95]

Henninger DD, Granger DN, Aw TY. Enterocyte respiration rates in feline small intestine exposed to graded ischemia. Am J Physiol. 1995;268:G116-G120.

[96]

Granger DN, McCord JM, Parks DA. Hollwarth ME. Xanthine oxidase inhibitors attenuate ischemia-induced vascular permeability changes in the cat intestine. Gastroenterology. 1986;90:80-84.

[97]

Grisham MB, Hernandez LA, Granger DN. Xanthine oxidase and neutrophil infiltration in intestinal ischemia. Am J Physiol. 1986;251:G567-G574.

[98]

Hernandez LA, Grisham MB, Granger DN. A role for iron in oxidant-mediated ischemic injury to intestinal microvasculature. Am J Physiol. 1987;253:G49-G53.

[99]

Hernandez LA, Grisham MB, Twohig B, Arfors KE, Harlan JM, Granger DN. Role of neutrophils in ischemia-reperfusion-induced microvascular injury. Am J Physiol. 1987;253:H699-H703.

[100]

Kanwar S, Kubes P. Ischemia/reperfusion-induced granulocyte influx is a multistep process mediated by mast cells. Microcirculation. 1994;1:175-182.

[101]

Kubes P. Ischemia-reperfusion in feline small intestine: a role for nitric oxide. Am J Physiol. 1993;264:G143-G149.

[102]

Kubes P, Hunter J, Granger DN. Ischemia/reperfusion-induced feline intestinal dysfunction: importance of granulocyte recruitment. Gastroenterology. 1992;103:807-812.

[103]

Kubes P, Ibbotson G, Russell J, Wallace JL, Granger DN. Role of platelet-activating factor in ischemia/reperfusion-induced leukocyte adherence. Am J Physiol. 1990;259:G300-5.

[104]

Kurtel H, Tso P, Granger DN. Granulocyte accumulation in postischemic intestine: role of leukocyte adhesion glycoprotein CD11/CD18. Am J Physiol. 1992;262:G878-82.

[105]

Nilsson UA, Aberg J, Aneman A, Lundgren O. Feline intestinal ischemia and reperfusion: relation between radical formation and tissue damage. Eur Surg Res. 1993;25:20-29.

[106]

Nilsson UA, Lundgren O, Haglind E, Bylund-Fellenius AC. Radical production during in vivo intestinal ischemia and reperfusion in the cat. Am J Physiol. 1989;257:G409-14.

[107]

Nilsson UA, Schoenberg MH, Aneman A, et al. Free radicals and pathogenesis during ischemia and reperfusion of the cat small intestine. Gastroenterology. 1994;106:629-636.

[108]

Parks DA, Bulkley GB, Granger DN, Hamilton SR, McCord JM. Ischemic injury in the cat small intestine: role of superoxide radicals. Gastroenterology. 1982;82:9-15.

[109]

Parks DA, Granger DN. Ischemia-induced vascular changes: role of xanthine oxidase and hydroxyl radicals. Am J Physiol. 1983;245:G285-9.

[110]

Schoenberg MH, Poch B, Younes M, et al. Involvement of neutrophils in postischaemic damage to the small intestine. Gut. 1991;32:905-912.

[111]

Suzuki M, Grisham MB, Granger DN. Leukocyte-endothelial cell adhesive interactions: role of xanthine oxidase-derived oxidants. J Leukoc Biol. 1991;50:488-494.

[112]

Suzuki M, Inauen W, Kvietys PR, et al. Superoxide mediates reperfusion-induced leukocyte-endothelial cell interactions. Am J Physiol. 1989;257:H1740-5.

[113]

Weixiong H, Aneman A, Nilsson U, Lundgren O. Quantification of tissue damage in the feline small intestine during ischaemia-reperfusion: the importance of free radicals. Acta Physiol Scand. 1994;150:241-250.

[114]

Zimmerman BJ, Granger DN. Reperfusion-induced leukocyte infiltration: role of elastase. Am J Physiol. 1990;259:H390-4.

[115]

Zimmerman BJ, Grisham MB, Granger DN. Role of oxidants in ischemia/reperfusion-induced granulocyte infiltration. Am J Physiol. 1990;258:G185-90.

[116]

Arakawa K, Takeyoshi I, Akao Y, Totsuka O, Matsumoto K, Morishita Y. Bradykinin B2 receptor antagonist FR173657 ameliorates small bowel ischemia-reperfusion injury in dogs. Dig Dis Sci. 2005;50:27-36.

[117]

Kawata K, Takeyoshi I, Iwanami K, et al. The effects of a selective cyclooxygenase-2 inhibitor on small bowel ischemia-reperfusion injury. Hepatogastroenterology. 2003;50:1970-1974.

[118]

Suto Y, Oshima K, Arakawa K, et al. The effect of nicorandil on small intestinal ischemia-reperfusion injury in a canine model. Dig Dis Sci. 2011;56:2276-2282.

[119]

Brath E, Miko I, Nemeth N, Kovacs J, Peto K, Furka I. Effects of allopurinol and preconditioning on apoptosis due to ischemia-reperfusion on a double jejunum-segment canine model. Acta Cir Bras. 2011;26:186-193.

[120]

Grøgaard B, Parks DA, Granger DN, McCord JM, Forsberg JO. Effects of ischemia and oxygen radicals on mucosal albumin clearance in intestine. Am J Physiol. 1982;242:G448-54.

[121]

Bertoletto PR, Ikejiri AT, Somaio Neto F, Chaves JC, et al. Oxidative stress gene expression profile in inbred mouse after ischemia/reperfusion small bowel injury. Acta Cir Bras. 2012;27:773-782.

[122]

Riaz AA, Wan MX, Schäfer T, et al. Allopurinol and superoxide dismutase protect against leucocyte-endothelium interactions in a novel model of colonic ischaemia-reperfusion. Br J Surg. 2002;89:1572-1580.

[123]

Wu R, Dong W, Wang Z, Jacob A, Cui T, Wang P. Enhancing apoptotic cell clearance mitigates bacterial translocation and promotes tissue repair after gut ischemia-reperfusion injury. Int J Mol Med. 2012;30:593-598.

[124]

Zhao H, Montalto MC, Pfeiffer KJ, Hao L, Stahl GL. Murine model of gastrointestinal ischemia associated with complement-dependent injury. J Appl Physiol. 1985;93:338-345.

[125]

Deshmukh DR, Mirochnitchenko O, Ghole VS, et al. Inouye M. Intestinal ischemia and reperfusion injury in transgenic mice overexpressing copper-zinc superoxide dismutase. Am J Physiol. 1997;273:C1130-5.

[126]

Lee H, Ko EH, Lai M, et al. Delineating the relationships among the formation of reactive oxygen species, cell membrane instability and innate autoimmunity in intestinal reperfusion injury. Mol Immunol. 2014;58:151-159.

[127]

Lee HT, Kim M, Kim JY, et al. Critical role of interleukin-17A in murine intestinal ischemia-reperfusion injury. Am J Physiol Gastrointest Liver Physiol. 2013;304:G12-25.

[128]

Stahl GL, Xu Y, Hao L, et al. Role for the alternative complement pathway in ischemia/reperfusion injury. Am J Pathol. 2003;162:449-455.

[129]

Goldsmith JR, Perez-Chanona E, Yadav PN, Whistler J, Roth B, Jobin C. Intestinal epithelial cell-derived µ-opioid signaling protects against ischemia reperfusion injury through PI3K signaling. Am J Pathol. 2013;182:776-785.

[130]

Grootjans J, Hundscheid IH, Buurman WA. Goblet cell compound exocytosis in the defense against bacterial invasion in the colon exposed to ischemia-reperfusion. Gut Microbes. 2013;4:232-235.

[131]

Grootjans J, Hundscheid IH, Lenaerts K, et al. Ischaemia-induced mucus barrier loss and bacterial penetration are rapidly counteracted by increased goblet cell secretory activity in human and rat colon. Gut. 2013;62:250-258.

[132]

Berlanga J, Prats P, Remirez D, et al. Prophylactic use of epidermal growth factor reduces ischemia/reperfusion intestinal damage. Am J Pathol. 2002;161:373-379.

[133]

Cai Y, Wang W, Liang H, Sun L, Teitelbaum DH, Yang H. Keratinocyte growth factor improves epithelial structure and function in a mouse model of intestinal ischemia/reperfusion. PLoS One. 2012;7:e44772.

[134]

Campos VF, Miranda-Ferreira R, Taha NS, et al. Atenolol to treat intestinal ischemia and reperfusion in rats. Transplant Proc. 2012;44:2313-2316.

[135]

Geng Y, Li J, Wang F, et al. Epidermal growth factor promotes proliferation and improves restoration after intestinal ischemia-reperfusion injury in rats. Inflammation. 2013;36:670-679.

[136]

Ghadie MM, Miranda-Ferreira R, Taha NS, et al. Study of heparin in intestinal ischemia and reperfusion in rats: morphologic and functional evaluation. Transplant Proc. 2012;44:2300-2303.

[137]

Gomez JS, Miranda-Ferreira R, Taha NS, et al. Study of L-arginine in intestinal lesions caused by ischemia-reperfusion in rats. Transplant Proc. 2012;44:2309-2312.

[138]

Huang CY, Hsiao JK, Lu YZ, Lee TC, Yu LC. Anti-apoptotic PI3K/Akt signaling by sodium/glucose transporter 1 reduces epithelial barrier damage and bacterial translocation in intestinal ischemia. Lab Invest. 2011;91:294-309.

[139]

Itoh H, Yagi M, Hasebe K, et al. Regeneration of small intestinal mucosa after acute ischemia-reperfusion injury. Dig Dis Sci. 2002;47:2704-2710.

[140]

Leung FW, Su KC, Passaro E Jr, Guth PH. Regional differences in gut blood flow and mucosal damage in response to ischemia and reperfusion. Am J Physiol. 1992;263:G301-5.

[141]

Martin AE, Luquette MH, Besner GE. Timing, route, and dose of administration of heparin-binding epidermal growth factor-like growth factor in protection against intestinal ischemia-reperfusion injury. J Pediatr Surg. 2005;40:1741-1747.

[142]

Osborne DL, Aw TY, Cepinskas G, Kvietys PR. Development of ischemia/reperfusion tolerance in the rat small intestine. An epithelium-independent event. J Clin Invest. 1994;94:1910-1918.

[143]

Park PO, Haglund U. Regeneration of small bowel mucosa after intestinal ischemia. Crit Care Med. 1992;20:135-139.

[144]

San Norberto, García EM, Taylor JH, Cenizo N, Vaquero C. Beneficial effects of intra-arterial and intravenous prostaglandin E1 in intestinal ischaemia-reperfusion injury. Interact Cardiovasc Thorac Surg. 2014;18:466-474.

[145]

Shafik AN. Febuxostat improves the local and remote organ changes induced by intestinal ischemia/reperfusion in rats. Dig Dis Sci. 2013;58:650-659.

[146]

Shen ZY, Zhang J, Song HL, Zheng WP. Bone-marrow mesenchymal stem cells reduce rat intestinal ischemia-reperfusion injury, ZO-1 downregulation and tight junction disruption via a TNF-α-regulated mechanism. World J Gastroenterol. 2013;19:3583-3595.

[147]

Takizawa Y, Kishimoto H, Kitazato T, Tomita M, Hayashi M. Changes in protein and mRNA expression levels of claudin family after mucosal lesion by intestinal ischemia/reperfusion. Int J Pharm. 2012;426:82-89.

[148]

Takizawa Y, Kishimoto H, Tomita M, Hayashi M. Changes in the expression levels of tight junction components during reconstruction of tight junction from mucosal lesion by intestinal ischemia/reperfusion. Eur J Drug Metab Pharmacokinet. 2014;39:211-220.

[149]

Wang F, Li Q, Wang C, Tang C, Li J. Dynamic alteration of the colonic microbiota in intestinal ischemia-reperfusion injury. PLoS One. 2012;7:e42027.

[150]

Ikeda H, Suzuki Y, Suzuki M, et al. Apoptosis is a major mode of cell death caused by ischaemia and ischaemia/reperfusion injury to the rat intestinal epithelium. Gut. 1998;42:530-537.

[151]

Megison SM, Horton JW, Chao H, Walker PB. A new model for intestinal ischemia in the rat. J Surg Res. 1990;49:168-173.

[152]

Udassin R, Vromen A, Haskel Y. The time sequence of injury and recovery following transient reversible intestinal ischemia. J Surg Res. 1994;56:221-225.

[153]

Tang ZH, Qiang JW, Feng XY, Li RK, Sun RX, Ye XG. Acute mesenteric ischemia induced by ligation of porcine superior mesenteric vein: multidetector CT evaluations. Acad Radiol. 2010;17:1146-1152.

[154]

Ahdieh N, Blikslager AT, Bhat BG, Coleman RA, Argenzio RA, Rhoads JM. L-glutamine and transforming growth factor-alpha enhance recovery of monoacylglycerol acyltransferase and diacylglycerol acyltransferase activity in porcine postischemic ileum. Pediatr Res. 1998;43:227-233.

[155]

Blikslager AT, Pell SM, Young KM. PGE2 triggers recovery of transmucosal resistance via EP receptor cross talk in porcine ischemia-injured ileum. Am J Physiol Gastrointest Liver Physiol. 2001;281:G375-81.

[156]

Blikslager AT, Rhoads JM, Bristol DG, Roberts MC, Argenzio RA. Glutamine and transforming growth factor-alpha stimulate extracellular regulated kinases and enhance recovery of villous surface area in porcine ischemic-injured intestine. Surgery. 1999;125:186-194.

[157]

Blikslager AT, Roberts MC, Argenzio RA. Prostaglandin-induced recovery of barrier function in porcine ileum is triggered by chloride secretion. Am J Physiol. 1999;276:G28-36.

[158]

Blikslager AT, Roberts MC, Rhoads JM, Argenzio RA. Is reperfusion injury an important cause of mucosal damage after porcine intestinal ischemia?. Surgery. 1997;121:526-534.

[159]

Blikslager AT, Roberts MC, Rhoads JM, Argenzio RA. Prostaglandins I2 and E2 have a synergistic role in rescuing epithelial barrier function in porcine ileum. J Clin Invest. 1997;100:1928-1933.

[160]

Blikslager AT, Roberts MC, Young KM, Rhoads JM, Argenzio RA. Genistein augments prostaglandin-induced recovery of barrier function in ischemia-injured porcine ileum. Am J Physiol Gastrointest Liver Physiol. 2000;278:G207-16.

[161]

Bruhn RS, Distelmaier MS, Hellmann-Sokolis M, Naami A, Kuhl CK, Hohl C. Early detection of acute mesenteric ischemia using diffusion-weighted 3.0-T magnetic resonance imaging in a porcine model. Invest Radiol. 2013;48:231-237.

[162]

Chan KL, Chan KW, Tam PK. Segmental small bowel allograft-ischemic injury and regeneration. J Pediatr Surg. 1998;33:1703-1706.

[163]

Gayle J, Jones SL, Argenzio RA, Blikslager AT. Neutrophils increase paracellular permeability of restituted ischemic-injured porcine ileum. Surgery. 2002;132:461-470.

[164]

Jacobi SK, Moeser AJ, Corl BA, Harrell RJ, Blikslager AT, Odle J. Dietary long-chain PUFA enhance acute repair of ischemia-injured intestine of suckling pigs. J Nutr. 2012;142:1266-1271.

[165]

Klein HM, Klosterhalfen B, Kinzel S, et al. CT and MRI of experimentally induced mesenteric ischemia in a porcine model. J Comput Assist Tomogr. 1996;20:254-261.

[166]

Lauronen J, Pakarinen MP, Pirinen P, et al. Effects of extrinsic denervation with or without ischemia-reperfusion injury on constitutional mucosal characteristics in porcine jejunoileum. Dig Dis Sci. 2001;46:476-485.

[167]

Little D, Dean RA, Young KM, et al. PI3K signaling is required for prostaglandin-induced mucosal recovery in ischemia-injured porcine ileum. Am J Physiol Gastrointest Liver Physiol. 2003;284:G46-56.

[168]

Moeser AJ, Haskell MM, Shifflett DE, Little D, Schultz BD, Blikslager AT. ClC-2 chloride secretion mediates prostaglandin-induced recovery of barrier function in ischemia-injured porcine ileum. Gastroenterology. 2004;127:802-815.

[169]

Moeser AJ, Nighot PK, Engelke KJ, Ueno R, Blikslager AT. Recovery of mucosal barrier function in ischemic porcine ileum and colon is stimulated by a novel agonist of the ClC-2 chloride channel, lubiprostone. Am J Physiol Gastrointest Liver Physiol. 2007;292:G647-56.

[170]

Moeser AJ, Nighot PK, Ryan KA, Wooten JG, Blikslager AT. Prostaglandin-mediated inhibition of Na+/H+ exchanger isoform 2 stimulates recovery of barrier function in ischemia-injured intestine. Am J Physiol Gastrointest Liver Physiol. 2006;291:G885-94.

[171]

Pakarinen MP, Pirinen P, Lauronen J, Raivio P, Kuusanmäki P, Halttunen J. Effects of transection and extrinsic denervation and a model of autotransplantation of the porcine jejunoileum on cholesterol biodynamics. J Pediatr Surg. 2003;38:1585-1590.

[172]

Schwartz CA, Haage P, Hohl C. Experimentelle Frühdiagnostik der akuten mesenterialen Ischämie mittels diffusionsgewichteter MRT (DWI) und paralleler Bildgebung [Experimental early detection of acute mesenteric ischemia with functional MRI (DWI) and parallel imaging]. Rofo. 2012;184:520-526.

[173]

Shifflett DE Jr, Bottone FG, Young KM, Moeser AJ, Jones SL, Blikslager AT. Neutrophils augment recovery of porcine ischemia-injured ileal mucosa by an IL-1beta-and COX-2-dependent mechanism. Am J Physiol Gastrointest Liver Physiol. 2004;287:G50-7.

[174]

Acosta S, Nilsson TK, Malina J, Malina M. L-lactate after embolization of the superior mesenteric artery. J Surg Res. 2007;143:320-328.

[175]

Block T, Isaksson HS, Acosta S, Björck M, Brodin D, Nilsson TK. Altered mRNA expression due to acute mesenteric ischaemia in a porcine model. Eur J Vasc Endovasc Surg. 2011;41:281-287.

[176]

Rosow DE, Sahani D, Strobel O, et al. Imaging of acute mesenteric ischemia using multidetector CT and CT angiography in a porcine model. J Gastrointest Surg. 2005;9:1262-1274. discussion 1274-5.

[177]

Derikx JP, Matthijsen RA, de Bruïne AP, et al. Rapid reversal of human intestinal ischemia-reperfusion induced damage by shedding of injured enterocytes and reepithelialisation. PLoS One. 2008;3:e3428.

[178]

Derikx JP, Matthijsen RA, de Bruïne AP, van Dam RM, Buurman WA, Dejong CH. A new model to study intestinal ischemia-reperfusion damage in man. J Surg Res. 2011;166:222-226.

[179]

Grootjans J, Lenaerts K, Derikx JP, et al. Human intestinal ischemia-reperfusion-induced inflammation characterized: experiences from a new translational model. Am J Pathol. 2010;176:2283-2291.

[180]

Matthijsen RA, Derikx JP, Kuipers D, van Dam RM, Dejong CH, Buurman WA. Enterocyte shedding and epithelial lining repair following ischemia of the human small intestine attenuate inflammation. PLoS One. 2009;4:e7045.

[181]

Granger DN, Kvietys PR, Perry MA. Role of exchange vessels in the regulation of intestinal oxygenation. Am J Physiol. 1982;242:G570-4.

[182]

Granger HJ, Nyhof RA. Dynamics of intestinal oxygenation: interactions between oxygen supply and uptake. Am J Physiol. 1982;243:G91-6.

[183]

Kvietys PR, Perry MA, Granger DN. Intestinal capillary exchange capacity and oxygen delivery-to-demand ratio. Am J Physiol. 1983;245:G635-40.

[184]

Johnson PC. Autoregulation of Blood Flow in the Intestine. Gastroenterology. 1967;52:435-441.

[185]

Granger DN, Granger HJ. Systems analysis of intestinal hemodynamics and oxygenation. Am J Physiol. 1983;245:G786-96.

[186]

Granger DN, Seifert H, Senchenkova E, Berlin Lanzer P. PanVascular Medicine. Heidelberg: Springer Berlin Heidelberg; 2015:3535-3553.

[187]

Blikslager AT. Life in the gut without oxygen: adaptive mechanisms and inflammatory bowel disease. Gastroenterology. 2008;134:346-348.

[188]

Powell DW, Mifflin RC, Valentich JD, Crowe SE, Saada JI, West AB. Myofibroblasts. II. Intestinal subepithelial myofibroblasts. Am J Physiol. 1999;277:C183-201.

[189]

Spronk PE, VS Kanoore-Edul, Ince C. Microcirculatory and mitochondrial distress syndrome (MMDS): a new look at sepsis. In: Pinsky MR, Payen D, eds. Functional Hemodynamic Monitoring. Update in Intensive Care and Emergency Medicine. Springer; 2005.

[190]

Sinaasappel M, van Iterson M, Ince C. Microvascular oxygen pressure in the pig intestine during haemorrhagic shock and resuscitation. J Physiol. 1999;514:245-253.

[191]

van Iterson M, Sinaasappel M, Burhop K, Trouwborst A, Ince C. Low-volume resuscitation with a hemoglobin-based oxygen carrier after hemorrhage improves gut microvascular oxygenation in swine. J Lab Clin Med. 1998;132:421-431.

[192]

Ince C, Ashruf JF, Avontuur JA, Wieringa PA, Spaan JA, Bruining HA. Heterogeneity of the hypoxic state in rat heart is determined at capillary level. Am J Physiol. 1993;264:H294-301.

[193]

Duke T. Dysoxia and lactate. Arch Dis Child. 1999;81:343-350.

[194]

Robin ED. Special report: dysoxia. Abnormal tissue oxygen utilization. Arch Intern Med. 1977;137:905-910.

[195]

Kvietys PR, Granger DN. Relation between intestinal blood flow and oxygen uptake. Am J Physiol. 1982;242:G202-8.

[196]

Kvietys PR, Navia CA, Premen AJ, Granger DN. Quantitative assessment of the two-component model of intestinal circulation. Am J Physiol. 1986;251:G446-52.

[197]

Laukoetter MG, Bruewer M, Nusrat A. Regulation of the intestinal epithelial barrier by the apical junctional complex. Curr Opin Gastroenterol. 2006;22:85-89.

[198]

Kistler EB, Alsaigh T, Chang M, Schmid-Schonbein GW. Impaired small-bowel barrier integrity in the presence of lumenal pancreatic digestive enzymes leads to circulatory shock. Shock. 2012;38:262-267.

[199]

Chang M, Alsaigh T, Kistler EB. Schmid-Schonbein GW. Breakdown of mucin as barrier to digestive enzymes in the ischemic rat small intestine. PLoS One. 2012;7:e40087.

[200]

Alsaigh T, Chang M, Richter M, Mazor R, Kistler EB. In vivo analysis of intestinal permeability following hemorrhagic shock. World J Crit Care Med. 2015;4:287-295.

[201]

Berant M, Alon U, Antebi D, Diamond E, Koerner H, Mordechovitz D. Effects of nonischemic hypoxia on jejunal mucosal structure and function: study of an experimental model in dogs. Pediatr Res. 1986;20:1143-1146.

[202]

Lifshitz F, Wapnir RA, Teichberg S. Alterations in jejunal transport and (Na+-K+)-ATPase in an experimental model of hypoxia in rats. Proc Soc Exp Biol Med. 1986;181:87-97.

[203]

Bulkley GB, Kvietys PR, Parks DA, Perry MA, Granger DN. Relationship of blood flow and oxygen consumption to ischemic injury in the canine small intestine. Gastroenterology. 1985;89:852-857.

[204]

DeLano FA, Hoyt DB, Schmid-Schonbein GW. Pancreatic digestive enzyme blockade in the intestine increases survival after experimental shock. Sci Transl Med. 2013;5.

[205]

Deitch EA, Xu D, Kaise VL. Role of the gut in the development of injury-and shock induced SIRS and MODS: the gut-lymph hypothesis, a review. Front Biosci. 2006;11:520-528.

[206]

Puleo F, Arvanitakis M, Van Gossum A, Preiser JC. Gut failure in the ICU. Semin Respir Crit Care Med. 2011;32:626-638.

[207]

Swank GM, Deitch EA. Role of the gut in multiple organ failure: bacterial translocation and permeability changes. World J Surg. 1996;20:411-417.

[208]

Hernandez G, Bruhn A, Luengo C, et al. Effects of dobutamine on systemic, regional and microcirculatory perfusion parameters in septic shock: a randomized, placebo-controlled, double-blind, crossover study. Intensive Care Med. 2013;39:1435-1443.

[209]

Boros M, Takaichi S, Hatanaka K. Ischemic time-dependent microvascular changes and reperfusion injury in the rat small intestine. J Surg Res. 1995;59:311-320.

[210]

Granger DN, Benoit JN, Suzuki M, Grisham MB. Leukocyte adherence to venular endothelium during ischemia-reperfusion. Am J Physiol. 1989;257:G683-8.

[211]

Granger DN, Hollwarth ME, Parks DA. Ischemia-reperfusion injury: role of oxygen-derived free radicals. Acta Physiol Scand Suppl. 1986;548:47-63.

[212]

Granger DN, Rutili G, McCord JM. Superoxide radicals in feline intestinal ischemia. Gastroenterology. 1981;81:22-29.

[213]

Grum CM, Gross TJ, Mody CH, Sitrin RG. Expression of xanthine oxidase activity by murine leukocytes. J Lab Clin Med. 1990;116:211-218.

[214]

Haglind E, Haglund U, Lundgren O, Stenberg B. Mucosal lesions of the small intestine after intestinal vascular obstruction in the rat. Acta Chir Scand. 1985;151:147-150.

[215]

Kubes P, Hunter J, Granger DN. Effects of cyclosporin A and FK506 on ischemia/reperfusion-induced neutrophil infiltration in the cat. Dig Dis Sci. 1991;36:1469-1472.

[216]

Chaudry IH. Use of ATP following shock and ischemia. Ann N Y Acad Sci. 1990;603:130-140. discussion 140-1.

[217]

Chung HY, Baek BS, Song SH, et al. Xanthine dehydrogenase/xanthine oxidase and oxidative stress. Age (Omaha). 1997;20:127-140.

[218]

Granger DN, Kvietys PR. Reperfusion injury and reactive oxygen species: the evolution of a concept. Redox Biol. 2015;6:524-551.

[219]

Kuwano Y, Tominaga K, Kawahara T, et al. Tumor necrosis factor alpha activates transcription of the NADPH oxidase organizer 1 (NOXO1) gene and upregulates superoxide production in colon epithelial cells. Free Radic Biol Med. 2008;45:1642-1652.

[220]

El Hassani RA, Benfares N, Caillou B, et al. Dual oxidase2 is expressed all along the digestive tract. Am J Physiol Gastrointest Liver Physiol. 2005;288:G933-42.

[221]

Grasberger H, Gao J, Nagao-Kitamoto H, et al. Increased expression of DUOX2 is an epithelial response to mucosal dysbiosis required for immune homeostasis in mouse intestine. Gastroenterology. 2015;149:1849-1859.

[222]

Kubes P, McCafferty DM. Nitric oxide and intestinal inflammation. Am J Med. 2000;109:150-158.

[223]

Tissier R, Chenoune M, Pons S, et al. Mild hypothermia reduces per-ischemic reactive oxygen species production and preserves mitochondrial respiratory complexes. Resuscitation. 2013;84:249-255.

[224]

Di Lisa F, Kaludercic N, Carpi A, Menabò R, Giorgio M. Mitochondria and vascular pathology. Pharmacol Rep. 2009;61:123-130.

[225]

Di Lisa F, Giorgio M, Ferdinandy P, Schulz R. New aspects of p66Shc in ischaemia reperfusion injury and other cardiovascular diseases. Br J Pharmacol. 2017;174:1690-1703.

[226]

Ong SB, Gustafsson AB. New roles for mitochondria in cell death in the reperfused myocardium. Cardiovasc Res. 2012;94:190-196.

[227]

García N, Chávez E. Mitochondrial DNA fragments released through the permeability transition pore correspond to specific gene size. Life Sci. 2007;81:1160-1166.

[228]

West AP, Shadel GS. Mitochondrial DNA in innate immune responses and inflammatory pathology. Nat Rev Immunol. 2017;17:363-375.

[229]

Riley JS, Tait SW. Mitochondrial DNA in inflammation and immunity. EMBO Rep. 2020;21:e49799.

[230]

Hemmi H, Takeuchi O, Kawai T, et al. A Toll-like receptor recognizes bacterial DNA. Nature. 2000;408:740-745.

[231]

Rose WA 2nd, Sakamoto K, Leifer CA. TLR9 is important for protection against intestinal damage and for intestinal repair. Sci Rep. 2012;2:574.

[232]

Próchnicki T, Latz E. Inflammasomes on the crossroads of innate immune recognition and metabolic control. Cell Metab. 2017;26:71-93.

[233]

Liu CY, Cham CM, Chang EB. Epithelial wound healing in inflammatory bowel diseases: the next therapeutic frontier. Transl Res. 2021;236:35-51.

[234]

Zhen Y, Zhang H. NLRP3 inflammasome and inflammatory bowel disease. Front Immunol. 2019;10:276.

[235]

Michalsky MP, Deitch EA, Ding J, Lu Q, Huang Q. Interleukin-6 and tumor necrosis factor production in an enterocyte cell model (Caco-2) during exposure to Escherichia coli. Shock. 1997;7:139-146.

[236]

Yeh KY, Yeh M, Glass J, Granger DN. Rapid activation of NF-kappaB and AP-1 and target gene expression in postischemic rat intestine. Gastroenterology. 2000;118:525-534.

[237]

Hierholzer C, Harbrecht BG, Billiar TR, Tweardy DJ. Hypoxia-inducible factor-1 activation and cyclo-oxygenase-2 induction are early reperfusion-independent inflammatory events in hemorrhagic shock. Arch Orthop Trauma Surg. 2001;121:219-222.

[238]

Liaudet L, Szabo A, Soriano FG, Zingarelli B, Szabo C, Salzman AL. Poly (ADP-ribose) synthetase mediates intestinal mucosal barrier dysfunction after mesenteric ischemia. Shock. 2000;14:134-141.

[239]

Louis K, Netea MG, Carrer DP, et al. Bacterial translocation in an experimental model of multiple organ dysfunctions. J Surg Res. 2013;183:686-694.

[240]

Podolsky DK. Mucosal immunity and inflammation. V. Innate mechanisms of mucosal defense and repair: the best offense is a good defense. Am J Physiol. 1999;277:G495-9.

[241]

Campbell EL, Bruyninckx WJ, Kelly CJ, et al. Transmigrating neutrophils shape the mucosal microenvironment through localized oxygen depletion to influence resolution of inflammation. Immunity. 2014;40:66-77.

[242]

Linfert D, Chowdhry T, Rabb H. Lymphocytes and ischemia-reperfusion injury. Transplant Rev (Orlando). 2009;23:1-10.

[243]

Schwartz BG, Kloner RA. Coronary no reflow. J Mol Cell Cardiol. 2012;52:873-882.

[244]

Harrois A, Baudry N, Huet O, et al. Synergistic deleterious effect of hypoxemia and hypovolemia on microcirculation in intestinal villi*. Crit Care Med. 2013;41:e376-84.

[245]

Fåhræus R. The suspension stability of blood. Physiol Rev. 1929;9:241-274.

[246]

Farina A, Fasano A, Rosso F. A theoretical model for the Fahraeus effect in medium-large microvessels. J Theor Biol. 2023;558:111355.

[247]

del Zoppo GJ, Schmid-Schonbein GW, Mori E, Copeland BR, Chang CM. Polymorphonuclear leukocytes occlude capillaries following middle cerebral artery occlusion and reperfusion in baboons. Stroke. 1991;22:1276-1283.

[248]

Helms CC, Gladwin MT, DB Kim-Shapiro. Erythrocytes and vascular function: oxygen and nitric oxide. Front Physiol. 2018;9:125.

[249]

Katona M, Gladwin MT, Straub AC. Flipping off and on the redox switch in the microcirculation. Annu Rev Physiol. 2023;85:165-189.

[250]

Ellsworth ML, Ellis CG, Goldman D, Stephenson AH, Dietrich HH, Sprague RS. Erythrocytes: oxygen sensors and modulators of vascular tone. Physiology (Bethesda). 2009;24:107-116.

[251]

Amoudruz L, Economides A, Koumoutsakos P. The volume of healthy red blood cells is optimal for advective oxygen transport in arterioles. Biophys J. 2024;123:1289-1296.

[252]

Imeri F, Nolan KA, Bapst AM, et al. Generation of renal Epo-producing cell lines by conditional gene tagging reveals rapid HIF-2 driven Epo kinetics, cell autonomous feedback regulation, and a telocyte phenotype. Kidney Int. 2019;95:375-387.

[253]

Koury MJ, Haase VH. Anaemia in kidney disease: harnessing hypoxia responses for therapy. Nat Rev Nephrol. 2015;11:394-410.

[254]

Broeker KAE, Fuchs MAA, Schrankl J, et al. Prolyl-4-hydroxylases 2 and 3 control erythropoietin production in renin-expressing cells of mouse kidneys. J Physiol. 2022;600:671-694.

[255]

Dahl SL, Pfundstein S, Hunkeler R, et al. Fate-mapping of erythropoietin-producing cells in mouse models of hypoxaemia and renal tissue remodelling reveals repeated recruitment and persistent functionality. Acta Physiol (Oxf). 2022;234:e13768.

[256]

Wang FS, Wang CJ, Chen YJ, et al. Ras induction of superoxide activates ERK-dependent angiogenic transcription factor HIF-1alpha and VEGF-A expression in shock wave-stimulated osteoblasts. J Biol Chem. 2004;279:10331-10337.

[257]

Singhal R, Shah YM. Oxygen battle in the gut: hypoxia and hypoxia-inducible factors in metabolic and inflammatory responses in the intestine. J Biol Chem. 2020;295:10493-10505.

[258]

Heir P, Ohh M. Hydroxylation-dependent interaction of substrates to the von Hippel-lindau tumor suppressor protein (VHL). Methods Mol Biol. 2016;1458:87-94.

[259]

Ohh M, Park CW, Ivan M, et al. Ubiquitination of hypoxia-inducible factor requires direct binding to the beta-domain of the von Hippel-Lindau protein. Nat Cell Biol. 2000;2:423-427.

[260]

Maxwell PH, Wiesener MS, Chang GW, et al. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature. 1999;399:271-275.

[261]

Jewell UR, Kvietikova I, Scheid A, Bauer C, Wenger RH, Gassmann M. Induction of HIF-1alpha in response to hypoxia is instantaneous. FASEB J. 2001;15:1312-1314.

[262]

Watts ER, Walmsley SR. Inflammation and hypoxia: hIF and PHD isoform selectivity. Trends Mol Med. 2019;25:33-46.

[263]

Lando D, Peet DJ, Whelan DA, Gorman JJ, Whitelaw ML. Asparagine hydroxylation of the HIF transactivation domain a hypoxic switch. Science. 2022;295:858-861.

[264]

Taylor CT, Scholz CC. The effect of HIF on metabolism and immunity. Nat Rev Nephrol. 2022;18:573-587.

[265]

Wenger RH, Stiehl DP, Camenisch G. Integration of oxygen signaling at the consensus HRE. Sci STKE. 2005;2005:re12.

[266]

Smythies JA, Sun M, Masson N, et al. Inherent DNA-binding specificities of the HIF-1alpha and HIF-2alpha transcription factors in chromatin. EMBO Rep. 2019;20:e46401.

[267]

Kaelin WG Jr, Ratcliffe PJ. Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. Mol Cell. 2008;30:393-402.

[268]

Ramakrishnan SK, Shah YM. Role of intestinal HIF-2alpha in health and disease. Annu Rev Physiol. 2016;78:301-325.

[269]

Sun L, Li T, Tang H, et al. Intestinal epithelial cells-derived hypoxia-inducible factor-1alpha is essential for the homeostasis of intestinal intraepithelial lymphocytes. Front Immunol. 2019;10:806.

[270]

Volkova YL, Pickel C, Jucht AE, Wenger RH, Scholz CC. The asparagine hydroxylase FIH: a unique oxygen sensor. Antioxid Redox Signal. 2022;37:913-935.

[271]

Samaja M, Ottolenghi S. The oxygen cascade from atmosphere to mitochondria as a tool to understand the (mal)adaptation to hypoxia. Int J Mol Sci. 2023;24:3670.

[272]

Martinez-Reyes I, Diebold LP, Kong H, et al. TCA cycle and mitochondrial membrane potential are necessary for diverse biological functions. Mol Cell. 2016;61:199-209.

[273]

Kalantar-Zadeh K, Berean KJ, Burgell RE, Muir JG, Gibson PR. Intestinal gases: influence on gut disorders and the role of dietary manipulations. Nat Rev Gastroenterol Hepatol. 2019;16:733-747.

[274]

Nizet V, Johnson RS. Interdependence of hypoxic and innate immune responses. Nat Rev Immunol. 2009;9:609-617.

[275]

Hellwig-Burgel T, Rutkowski K, Metzen E, Fandrey J, Jelkmann W. Interleukin-1beta and tumor necrosis factor-alpha stimulate DNA binding of hypoxia-inducible factor-1. Blood. 1999;94:1561-1567.

[276]

Scharte M, Han X, Bertges DJ, Fink MP, Delude RL. Cytokines induce HIF-1 DNA binding and the expression of HIF-1-dependent genes in cultured rat enterocytes. Am J Physiol Gastrointest Liver Physiol. 2003;284:G373-84.

[277]

Koury J, Deitch EA, Homma H, et al. Persistent HIF-1alpha activation in gut ischemia/reperfusion injury: potential role of bacteria and lipopolysaccharide. Shock. 2004;22:270-277.

[278]

Huang LE, Gu J, Schau M, Bunn HF. Regulation of hypoxia-inducible factor 1alpha is mediated by an O2-dependent degradation domain via the ubiquitin-proteasome pathway. Proc Natl Acad Sci USA. 1998;95:7987-7992.

[279]

Scharte M, Han X, Uchiyama T, Tawadrous Z, Delude RL, Fink MP. LPS increases hepatic HIF-1alpha protein and expression of the HIF-1-dependent gene aldolase A in rats. J Surg Res. 2006;135:262-267.

[280]

Niu G, Briggs J, Deng J, et al. Signal transducer and activator of transcription 3 is required for hypoxia-inducible factor-1alpha RNA expression in both tumor cells and tumor-associated myeloid cells. Mol Cancer Res. 2008;6:1099-1105.

[281]

D’Hulst G, Soro-Arnaiz I, Masschelein E, et al. PHD1 controls muscle mTORC1 in a hydroxylation-independent manner by stabilizing leucyl tRNA synthetase. Nat Commun. 2020;11:174.

[282]

Masoud GN, Li W. HIF-1alpha pathway: role, regulation and intervention for cancer therapy. Acta Pharm Sin B. 2015;5:378-389.

[283]

McGettrick AF, O’Neill LAJ. The role of HIF in immunity and inflammation. Cell Metab. 2020;32:524-536.

[284]

Feinman R, Deitch EA, Watkins AC, et al. HIF-1 mediates pathogenic inflammatory responses to intestinal ischemia-reperfusion injury. Am J Physiol Gastrointest Liver Physiol. 2010;299:G833-43.

[285]

Birchenough GM, Johansson ME, Gustafsson JK, Bergstrom JH, Hansson GC. New developments in goblet cell mucus secretion and function. Mucosal Immunol. 2015;8:712-719.

[286]

Bin Hafeez A, Jiang X, Bergen PJ, Zhu Y. Antimicrobial peptides: an update on classifications and databases. Int J Mol Sci. 2021;22:11691.

[287]

Louis NA, Hamilton KE, Canny G, Shekels LL, Ho SB, Colgan SP. Selective induction of mucin-3 by hypoxia in intestinal epithelia. J Cell Biochem. 2006;99:1616-1627.

[288]

Krzywinska E, Stockmann C. Hypoxia, metabolism and immune cell function. Biomedicines. 2018;6:56.

[289]

Saeedi BJ, Kao DJ, Kitzenberg DA, et al. HIF-dependent regulation of claudin-1 is central to intestinal epithelial tight junction integrity. Mol Biol Cell. 2015;26:2252-2262.

[290]

Burrows N, Maxwell PH. Hypoxia and B cells. Exp Cell Res. 2017;356:197-203.

[291]

Finlay DK, Rosenzweig E, Sinclair LV, et al. PDK1 regulation of mTOR and hypoxia-inducible factor 1 integrate metabolism and migration of CD8+ T cells. J Exp Med. 2012;209:2441-2453.

[292]

Tao JH, Barbi J, Pan F. Hypoxia-inducible factors in T lymphocyte differentiation and function. A review in the theme: cellular responses to hypoxia. Am J Physiol Cell Physiol. 2015;309:C580-9.

[293]

Palazon A, Tyrakis PA, Macias D, et al. An HIF-1alpha/VEGF-A axis in cytotoxic t cells regulates tumor progression. Cancer Cell. 2017;32:669-683.e5.

[294]

Doedens AL, Phan AT, Stradner MH, et al. Hypoxia-inducible factors enhance the effector responses of CD8(+) T cells to persistent antigen. Nat Immunol. 2013;14:1173-1182.

[295]

Li Y, Wang Y, Shi F, et al. Phospholipid metabolites of the gut microbiota promote hypoxia-induced intestinal injury via CD1d-dependent γδ T cells. Gut Microbes. 2022;14:2096994.

[296]

Maurya DK, Sharma D, Sandur SK. Hypoxia induces dichotomous and reversible attenuation of T cell responses through reactive oxygen species-dependent phenotype redistribution and delay in lymphoblast proliferation. Free Radic Res. 2023;57:1-13.

[297]

Fluck K, Breves G, Fandrey J, Winning S. Hypoxia-inducible factor 1 in dendritic cells is crucial for the activation of protective regulatory T cells in murine colitis. Mucosal Immunol. 2016;9:379-390.

[298]

Wobben R, Husecken Y, Lodewick C, Gibbert K, Fandrey J, Winning S. Role of hypoxia inducible factor-1alpha for interferon synthesis in mouse dendritic cells. Biol Chem. 2013;394:495-505.

[299]

Kuhlicke J, Frick JS, Morote-Garcia JC, Rosenberger P, Eltzschig HK. Hypoxia inducible factor (HIF)-1 coordinates induction of Toll-like receptors TLR2 and TLR6 during hypoxia. PLoS One. 2007;2:e1364.

[300]

Köhler T, Reizis B, Johnson RS, Weighardt H, Förster I. Influence of hypoxia-inducible factor 1α on dendritic cell differentiation and migration. Eur J Immunol. 2012;42:1226-1236.

[301]

Mills EL, O’Neill LA. Reprogramming mitochondrial metabolism in macrophages as an anti-inflammatory signal. Eur J Immunol. 2016;46:13-21.

[302]

Staples KJ, Sotoodehnejadnematalahi F, Pearson H, et al. Monocyte-derived macrophages matured under prolonged hypoxia transcriptionally up-regulate HIF-1α mRNA. Immunobiology. 2011;216:832-839.

[303]

Tannahill GM, Curtis AM, Adamik J, et al. Succinate is an inflammatory signal that induces IL-1β through HIF-1α. Nature. 2013;496:238-242.

[304]

Guo X, Zhu Z, Zhang W, et al. Nuclear translocation of HIF-1α induced by influenza A (H1N1) infection is critical to the production of proinflammatory cytokines. Emerg Microbes Infect. 2017;6:e39.

[305]

Barrero CA, Datta PK, Sen S, et al. HIV-1 Vpr modulates macrophage metabolic pathways: a SILAC-based quantitative analysis. PLoS One. 2013;8:e68376.

[306]

Mecklenburgh KI, Walmsley SR, Cowburn AS, et al. Involvement of a ferroprotein sensor in hypoxia-mediated inhibition of neutrophil apoptosis. Blood. 2002;100:3008-3016.

[307]

Walmsley SR, Chilvers ER, Thompson AA, et al. Prolyl hydroxylase 3 (PHD3) is essential for hypoxic regulation of neutrophilic inflammation in humans and mice. J Clin Invest. 2011;121:1053-1063.

[308]

Kong T, Eltzschig HK, Karhausen J, Colgan SP, Shelley CS. Leukocyte adhesion during hypoxia is mediated by HIF-1-dependent induction of beta2 integrin gene expression. Proc Natl Acad Sci USA. 2004;101:10440-10445.

[309]

Biancheri P, Di Sabatino A, Corazza GR, MacDonald TT. Proteases and the gut barrier. Cell Tissue Res. 2013;351:269-280.

[310]

Dejonckheere E, Vandenbroucke RE, Libert C. Matrix metalloproteinases as drug targets in ischemia/reperfusion injury. Drug Discov Today. 2011;16:762-778.

[311]

Ito K, Kitajima Y, Kai K, et al. Matrix metalloproteinase 1 expression is regulated by HIF 1 dependent and epigenetic mechanisms and serves a tumor suppressive role in gastric cancer progression. Int J Oncol. 2021;59:102.

[312]

Zhu S, Zhou Y, Wang L, et al. Transcriptional upregulation of MT2-MMP in response to hypoxia is promoted by HIF-1alpha in cancer cells. Mol Carcinog. 2011;50:770-780.

[313]

Huang CH, Yang WH, Chang SY, et al. Regulation of membrane-type 4 matrix metalloproteinase by SLUG contributes to hypoxia-mediated metastasis. Neoplasia. 2009;11:1371-1382.

[314]

Rajagopalan S, Meng XP, Ramasamy S, Harrison DG, Galis ZS. Reactive oxygen species produced by macrophage-derived foam cells regulate the activity of vascular matrix metalloproteinases in vitro. Implications for atherosclerotic plaque stability. J Clin Invest. 1996;98:2572-2579.

[315]

Shah SV, Baricos WH, Basci A. Degradation of human glomerular basement membrane by stimulated neutrophils. Activation of a metalloproteinase(s) by reactive oxygen metabolites. J Clin Invest. 1987;79:25-31.

[316]

Weiss SJ, Peppin G, Ortiz X, Ragsdale C, Test ST. Oxidative autoactivation of latent collagenase by human neutrophils. Science. 1985;227:747-749.

[317]

Rosario HS, Waldo SW, Becker SA, Schmid-Schonbein GW. Pancreatic trypsin increases matrix metalloproteinase-9 accumulation and activation during acute intestinal ischemia-reperfusion in the rat. Am J Pathol. 2004;164:1707-1716.

[318]

Kocael A, Inal BB, Guntas G, et al. Evaluation of matrix metalloproteinase, myeloperoxidase, and oxidative damage in mesenteric ischemia-reperfusion injury. Hum Exp Toxicol. 2016;35:851-860.

[319]

Dong W, Li F, Pan Z, et al. Resveratrol ameliorates subacute intestinal ischemia-reperfusion injury. J Surg Res. 2013;185:182-189.

[320]

Yurdakan G, Tekin IO, Comert M, Acikgoz S, Sipahi EY. The presence of oxidized low-density lipoprotein and inducible nitric oxide synthase expression in renal damage after intestinal ischemia reperfusion. Kaohsiung J Med Sci. 2012;28:16-22.

[321]

Dishart MK, Schlichtig R, Tonnessen TI, et al. Mitochondrial redox state as a potential detector of liver dysoxia in vivo. J Appl Physiol (1985). 1998;84:791-797.

[322]

Merz T, Denoix N, Huber-Lang M, Singer M, Radermacher P, McCook O. Microcirculation vs. mitochondria-what to target? Front Med (Lausanne). 2020;7:416.

[323]

Andersen LW, Mackenhauer J, Roberts JC, Berg KM, Cocchi MN, Donnino MW. Etiology and therapeutic approach to elevated lactate levels. Mayo Clin Proc. 2013;88:1127-1140.

[324]

Dubin A, Estenssoro E, Murias G, et al. Intramucosal-arterial Pco2 gradient does not reflect intestinal dysoxia in anemic hypoxia. J Trauma. 2004;57:1211-1217.

[325]

Fisher EM, LaManna JC. Gut dysoxia: comparison of sites to detect regional gut dysoxia. Adv Exp Med Biol. 2005;566:151-157.

[326]

Tang AL, Shen MJ, Zhang GQ. Intestinal microcirculation dysfunction in sepsis: pathophysiology, clinical monitoring, and therapeutic interventions. World J Emerg Med. 2022;13:343-348.

[327]

Fleischmann E, Herbst F, Kugener A, et al. Mild hypercapnia increases subcutaneous and colonic oxygen tension in patients given 80% inspired oxygen during abdominal surgery. Anesthesiology. 2006;104:944-949.

[328]

Dyson A, Bezemer R, Legrand M, Balestra G, Singer M, Ince C. Microvascular and interstitial oxygen tension in the renal cortex and medulla studied in a 4-h rat model of LPS-induced endotoxemia. Shock. 2011;36:83-89.

[329]

Hasibeder W, Germann R, Wolf HJ, et al. Effects of short-term endotoxemia and dopamine on mucosal oxygenation in porcine jejunum. Am J Physiol. 1996;270:G667-75.

[330]

Ince C, Mik EG. Microcirculatory and mitochondrial hypoxia in sepsis, shock, and resuscitation. J Appl Physiol (1985). 2016;120:226-235.

[331]

Sinaasappel M, Donkersloot C, van Bommel J, Ince C. PO2 measurements in the rat intestinal microcirculation. Am J Physiol. 1999;276:G1515-20.

[332]

Shonat RD, Richmond KN, Johnson PC. Phosphorescence quenching and the microcirculation: an automated, multipoint oxygen tension measuring instrument. Rev Sci Instrum. 1955;66:5075-5084.

[333]

Vanderkooi JM, Maniara G, Green TJ, Wilson DF. An optical method for measurement of dioxygen concentration based upon quenching of phosphorescence. J Biol Chem. 1987;262:5476-5482.

[334]

Sinaasappel M, Ince C. Calibration of Pd-porphyrin phosphorescence for oxygen concentration measurements in vivo. J Appl Physiol (1985). 1996;81:2297-2303.

[335]

Shi H, Sun N, Mayevsky A, Zhang Z, Luo Q. Preclinical evidence of mitochondrial nicotinamide adenine dinucleotide as an effective alarm parameter under hypoxia. J Biomed Opt. 2014;19:17005.

[336]

Mayevsky A, Barbiro-Michaely E. Use of NADH fluorescence to determine mitochondrial function in vivo. Int J Biochem Cell Biol. 2009;41:1977-1988.

[337]

Mayevsky A, Rogatsky GG. Mitochondrial function in vivo evaluated by NADH fluorescence: from animal models to human studies. Am J Physiol Cell Physiol. 2007;292:C615-40.

[338]

Mik EG, Johannes T, Zuurbier CJ, et al. In vivo mitochondrial oxygen tension measured by a delayed fluorescence lifetime technique. Biophys J. 2008;95:3977-3990.

[339]

Rivera-Chávez F, Lopez CA, Bäumler AJ. Oxygen as a driver of gut dysbiosis. Free Radic Biol Med. 2017;105:93-101.

[340]

Shin NR, Whon TW, Bae JW. Proteobacteria: microbial signature of dysbiosis in gut microbiota. Trends Biotechnol. 2015;33:496-503.

[341]

Gophna U, Sommerfeld K, Gophna S, Doolittle WF, Veldhuyzen van Zanten SJ. Differences between tissue-associated intestinal microfloras of patients with Crohn’s disease and ulcerative colitis. J Clin Microbiol. 2006;44:4136-4141.

[342]

Normann E, Fahlén A, Engstrand L, Lilja HE. Intestinal microbial profiles in extremely preterm infants with and without necrotizing enterocolitis. Acta Paediatr. 2013;102:129-136.

[343]

De Backer D, Ospina-Tascón GA. How to assess tissue oxygenation? Curr Opin Crit Care. 2023;29:244-251.

[344]

Gruartmoner G, Mesquida J, Ince C. Microcirculatory monitoring in septic patients: where do we stand? Med Intensiva. 2017;41:44-52.

[345]

Murphy PB, Parry NG, Sela N, Leslie K, Vogt K, Ball I. Intra-abdominal hypertension is more common than previously thought: a prospective study in a mixed medical-surgical ICU. Crit Care Med. 2018;46:958-964.

[346]

Wise R, Rodseth R, Párraga-Ros E, et al. The pathophysiological impact of intra-abdominal hypertension in pigs. PLoS One. 2023;18:e0290451.

[347]

Vidal MG, Ruiz Weisser J, Gonzalez F, et al. Incidence and clinical effects of intra-abdominal hypertension in critically ill patients. Crit Care Med. 2008;36:1823-1831.

[348]

Murtaza G, Pal KM, Jajja MR, Nawaz Z, Koondhar R, Nasim S. Intra abdominal hypertension; incidence, prevalence and outcomes in a mixed intensive care unit: prospective cohort study. Int J Surg. 2015;19:67-71.

[349]

Malbrain MLNG, Langer T, Annane D, et al. Intravenous fluid therapy in the perioperative and critical care setting: executive summary of the International Fluid Academy (IFA). Ann Intensive Care. 2020;10:64.

[350]

Jacobs R, Wise RD, Myatchin I, et al. Fluid management, intra-abdominal hypertension and the abdominal compartment syndrome: a narrative review. Life (Basel). 2022;12:1390.

[351]

Woodcock TE, Woodcock TM. Revised starling equation and the glycocalyx model of transvascular fluid exchange: an improved paradigm for prescribing intravenous fluid therapy. Br J Anaesth. 2012;108:384-394.

[352]

Sugrue M, Bauman A, Jones F, et al. Clinical examination is an inaccurate predictor of intraabdominal pressure. World J Surg. 2002;26:1428-1431.

[353]

Balogh Z, McKinley BA, Cocanour CS, et al. Supranormal trauma resuscitation causes more cases of abdominal compartment syndrome. Arch Surg. 2003;138:637-642. discussion 642-3.

[354]

Regueira T, Hasbun P, Rebolledo R, et al. Intraabdominal hypertension in patients with septic shock. Am Surg. 2007;73:865-870.

[355]

Diebel LN, Dulchavsky SA, Wilson RF. Effect of increased intra-abdominal pressure on mesenteric arterial and intestinal mucosal blood flow. J Trauma. 1992;33:45-48. discussion 48-9.

[356]

Párraga Ros E, Correa-Martín L, Sánchez-Margallo FM, et al. Intestinal histopathological changes in a porcine model of pneumoperitoneum-induced intra-abdominal hypertension. Surg Endosc. 2018;32:3989-4002.

[357]

Diebel L, Saxe J, Dulchavsky S. Effect of intra-abdominal pressure on abdominal wall blood flow. Am Surg. 1992;58:573-575. discussion 575-6.

[358]

Ivatury RR, Diebel L, Porter JM, Simon RJ. Intra-abdominal hypertension and the abdominal compartment syndrome. Surg Clin North Am. 1997;77:783-800.

[359]

Sosa G, Gandham N, Landeras V, Calimag AP, Lerma E. Abdominal compartment syndrome. Dis Mon. 2019;65:5-19.

[360]

De Waele JJ. Intra-abdominal hypertension and abdominal compartment syndrome. Curr Opin Crit Care. 2022;28:695-701.

[361]

Magder S. Bench-to-bedside review: an approach to hemodynamic monitoring-Guyton at the bedside. Crit Care. 2012;16:236.

[362]

Magder S. Understanding central venous pressure: not a preload index? Curr Opin Crit Care. 2015;21:369-375.

[363]

Hamzaoui O, Teboul JL. Central venous pressure (CVP). Intensive Care Med. 2022;48:1498-1500.

[364]

Gelman S. Venous circulation: a few challenging concepts in goal-directed hemodynamic therapy (GDHT). In: Farag E, Kurz A, Troianos C, eds. Perioperative Fluid Management. Springer Nature; 2020:365-385.

[365]

Birch DJ, Turmaine M, Boulos PB, Burnstock G. Sympathetic innervation of human mesenteric artery and vein. J Vasc Res. 2008;45:323-332.

[366]

Thiele RH, Nemergut EC. Lynch C 3rd. The clinical implications of isolated alpha(1) adrenergic stimulation. Anesth Analg. 2011;113:297-304.

[367]

Chalkias A, Laou E, Papagiannakis N, et al. Assessment of dynamic changes in stressed volume and venous return during hyperdynamic septic shock. J Pers Med. 2022;12:724.

[368]

Chalkias A, Laou E, Papagiannakis N, et al. Determinants of venous return in steady-state physiology and asphyxia-induced circulatory shock and arrest: an experimental study. Intensive Care Med Exp. 2022;10:13.

[369]

Rutlen DL, Supple EW Jr, Powell WJ. Adrenergic regulation of total systemic distensibility. Venous distensibility effects of norepinephrine and isoproterenol before and after selective adrenergic blockade. Am J Cardiol. 1981;47:579-588.

[370]

Mermiri M, Mavrovounis G, Laou E, Papagiannakis N, Pantazopoulos I, Chalkias A. Association of vasopressors with mortality in critically ill patients with COVID-19: a systematic review and meta-analysis. APS. 2023;1:10.

[371]

Lunemann JD, Buttgereit F, Tripmacher R, Baerwald CG, Burmester GR, Krause A. Effects of norepinephrine on oxygen consumption of quiescent and activated human peripheral blood mononuclear cells. Ann N Y Acad Sci. 2002;966:365-368.

[372]

Porta F, Bracht H, Weikert C, et al. Effects of endotoxin and catecholamines on hepatic mitochondrial respiration. Inflammation. 2009;32:315-321.

[373]

Rudiger A, Singer M. Decatecholaminisation during sepsis. Crit Care. 2016;20:309.

[374]

Hartmann C, Radermacher P, Wepler M, Nussbaum B. Non-hemodynamic effects of catecholamines. Shock. 2017;48:390-400.

[375]

Radermacher P, Buhl R, Santak B, et al. The effects of prostacyclin on gastric intramucosal pH in patients with septic shock. Intensive Care Med. 1995;21:414-421.

[376]

Cerra FB, Hassett J, Siegel JH. Vasodilator therapy in clinical sepsis with low output syndrome. J Surg Res. 1978;25:180-183.

[377]

Chalkias A, Laou E, Mermiri M, et al. Microcirculation-guided treatment improves tissue perfusion and hemodynamic coherence in surgical patients with septic shock. Eur J Trauma Emerg Surg. 2022;48:4699-4711.

[378]

Joh D, Morreau M, Lee A, et al. Intraluminal oxygen mitigates acute mesenteric ischaemia: a systematic review of methods and outcomes in animal studies. ANZ J Surg. 2023;93:859-868.

[379]

Morreau M, Cheah E, Thakur S, et al. Luminal delivery of pectin-modified oxygen microbubbles mitigates rodent experimental intestinal ischemia. J Surg Res. 2024;296:603-611.

[380]

Attaye I, Smulders YM, de Waard MC, et al. The effects of hyperoxia on microvascular endothelial cell proliferation and production of vaso-active substances. Intensive Care Med Exp. 2017;5:22.

[381]

Hilderink BN, Crane RF, van den Bogaard B, Pillay J, Juffermans NP. Hyperoxemia and hypoxemia impair cellular oxygenation: a study in healthy volunteers. Intensive Care Med Exp. 2024;12:37.

[382]

Orbegozo Cortés D, Puflea F, Donadello K, et al. Normobaric hyperoxia alters the microcirculation in healthy volunteers. Microvasc Res. 2015;98:23-28.

[383]

Smit B, Smulders YM, Eringa EC, et al. Effects of hyperoxia on vascular tone in animal models: systematic review and meta-analysis. Crit Care. 2018;22:189.

[384]

Bernardi P, Gerle C, Halestrap AP, et al. Identity, structure, and function of the mitochondrial permeability transition pore: controversies, consensus, recent advances, and future directions. Cell Death Differ. 2023;30:1869-1885.

[385]

Endlicher R, Drahota Z, Štefková K, Červinková Z, Kučera O. The mitochondrial permeability transition pore-current knowledge of its structure, function, and regulation, and optimized methods for evaluating its functional state. Cells. 2023;12:1273.

[386]

Baines CP. The cardiac mitochondrion: nexus of stress. Annu Rev Physiol. 2010;72:61-80.

[387]

Liao S, Luo J, Kadier T, Ding K, Chen R, Meng Q. Mitochondrial DNA release contributes to intestinal ischemia/reperfusion injury. Front Pharmacol. 2022;13:854994.

[388]

Vanhorebeek I, Gunst J, Ellger B, et al. Hyperglycemic kidney damage in an animal model of prolonged critical illness. Kidney Int. 2009;76:512-520.

[389]

Vogt JA, Wachter U, Wagner K, et al. Effects of glycemic control on glucose utilization and mitochondrial respiration during resuscitated murine septic shock. Intensive Care Med Exp. 2014;2:19.

[390]

Detaille D, Guigas B, Chauvin C, et al. Metformin prevents high-glucose-induced endothelial cell death through a mitochondrial permeability transition-dependent process. Diabetes. 2005;54:2179-2187.

[391]

Detaille D, Vial G, Borel AL, et al. Imeglimin prevents human endothelial cell death by inhibiting mitochondrial permeability transition without inhibiting mitochondrial respiration. Cell Death Discov. 2016;2:15072.

[392]

Piel DA, Gruber PJ, Weinheimer CJ, et al. Mitochondrial resuscitation with exogenous cytochrome c in the septic heart. Crit Care Med. 2007;35:2120-2127.

[393]

Verma R, Huang Z, Deutschman CS, Levy RJ. Caffeine restores myocardial cytochrome oxidase activity and improves cardiac function during sepsis. Crit Care Med. 2009;37:1397-1402.

[394]

Crouser ED. Respiratory failure during critical illness: are mitochondria to blame?. Am J Respir Crit Care Med. 2005;172:793-794.

[395]

Jones IH, Tao D, Vagdama B, et al. Remote ischaemic pre-conditioning reduces intestinal ischaemia reperfusion injury in a newborn rat. J Pediatr Surg. 2023;58:1389-1398.

[396]

Hummitzsch L, Zitta K, Berndt R, et al. Remote ischemic preconditioning attenuates intestinal mucosal damage: insight from a rat model of ischemia-reperfusion injury. J Transl Med. 2019;17:136.

[397]

Jia Z, Lian W, Shi H, et al. Ischemic postconditioning protects against intestinal ischemia/reperfusion injury via the HIF-1alpha/miR-21 axis. Sci Rep. 2017;7:16190.

[398]

Li C, Li YS, Xu M, et al. Limb remote ischemic preconditioning for intestinal and pulmonary protection during elective open infrarenal abdominal aortic aneurysm repair: a randomized controlled trial. Anesthesiology. 2013;118:842-852.

[399]

Yi M, Wu Y, Li M, Zhang T, Chen Y. Effect of remote ischemic preconditioning on postoperative gastrointestinal function in patients undergoing laparoscopic colorectal cancer resection. Int J Colorectal Dis. 2023;38:68.

[400]

Cheng CH, Lin HC, Lai IR, Lai HS. Ischemic postconditioning attenuate reperfusion injury of small intestine: impact of mitochondrial permeability transition. Transplantation. 2013;95:559-565.

[401]

Chu W, Li S, Wang S, Yan A, Nie L. Ischemic postconditioning provides protection against ischemia-reperfusion injury in intestines of rats. Int J Clin Exp Pathol. 2015;8:6474-6481.

[402]

Wen SH, Li Y, Li C, et al. Ischemic postconditioning during reperfusion attenuates intestinal injury and mucosal cell apoptosis by inhibiting JAK/STAT signaling activation. Shock. 2012;38:411-419.

[403]

Chalkias A, Pais G, Gulati A. Effect of centhaquine on the coagulation cascade in normal state and uncontrolled hemorrhage: a multiphase study combining ex vivo and in vivo experiments in different species. Int J Mol Sci. 2024;25:3494.

[404]

Schucht JE, Harbrecht BG, Bond LM, Risinger WB, Matheson PJ, Smith JW. Plasma resuscitation improves and restores intestinal microcirculatory physiology following haemorrhagic shock. Vox Sang. 2023;118:863-872.

[405]

Schucht JE, Matheson PJ, Harbrecht BG, Bond L, Ashkettle GR, Smith JW. Plasma resuscitation with adjunctive peritoneal resuscitation reduces ischemia-induced intestinal barrier breakdown following hemorrhagic shock. J Trauma Acute Care Surg. 2021;90:27-34.

[406]

Thorburn T, Aali M, Kostek L, et al. Anti-inflammatory effects of a novel iron chelator, DIBI, in experimental sepsis. Clin Hemorheol Microcirc. 2017;67:241-250.

[407]

Truse R, Nolten I, Schulz J, et al. Topical melatonin improves gastric microcirculatory oxygenation during hemorrhagic shock in dogs but does not alter barrier integrity of caco-2 monolayers. Front Med (Lausanne). 2020;7:510.

[408]

Jurkovich GJ, Pitt RM, Curreri PW, Granger DN. Hypothermia prevents increased capillary permeability following ischemia-reperfusion injury. J Surg Res. 1988;44:514-521.

[409]

Engerson TD, McKelvey TG, Rhyne DB, Boggio EB, Snyder SJ, Jones HP. Conversion of xanthine dehydrogenase to oxidase in ischemic rat tissues. J Clin Invest. 1987;79:1564-1570.

[410]

Cai Y, Xu H, Yan J, Zhang L, Lu Y. Molecular targets and mechanism of action of dexmedetomidine in treatment of ischemia/reperfusion injury. Mol Med Rep. 2014;9:1542-1550.

[411]

Chalkias A, Barreto EF, Laou E, et al. A critical appraisal of the effects of anesthetics on immune-system modulation in critically ill patients with COVID-19. Clin Ther. 2021;43:e57-70.

[412]

Clarysse M, Accarie A, Farré R, et al. Protective effect of oxygen and isoflurane in rodent model of intestinal ischemia-reperfusion injury. Int J Mol Sci. 2023;24:2587.

RIGHTS & PERMISSIONS

2024 The Author(s). Clinical and Translational Medicine published by John Wiley & Sons Australia, Ltd on behalf of Shanghai Institute of Clinical Bioinformatics.

AI Summary AI Mindmap
PDF

103

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/