Deciphering the epigenetic role of long non-coding RNAs in mood disorders: Focus on human brain studies

Bhaskar Roy , Anuj K. Verma , Yu Funahashi , Yogesh Dwivedi

Clinical and Translational Medicine ›› 2025, Vol. 15 ›› Issue (3) : e70135

PDF
Clinical and Translational Medicine ›› 2025, Vol. 15 ›› Issue (3) : e70135 DOI: 10.1002/ctm2.70135
REVIEW

Deciphering the epigenetic role of long non-coding RNAs in mood disorders: Focus on human brain studies

Author information +
History +
PDF

Abstract

•Brain-centric lncRNAs regulate gene networks, and their disruption is linked to MDD.

•In MDD, altered lncRNAs disrupt gene regulation by changing chromatin looping or modifying chromatin accessibility.

•These changes lead to neuronal dysfunction, affecting neural circuitry and synaptic plasticity.

•The result is impaired brain function, contributing to the symptoms of MDD.

Keywords

bipolar disorder / epigenetics / gene regulation / human postmortem brain / long non-coding RNA / major depressive disorder

Cite this article

Download citation ▾
Bhaskar Roy, Anuj K. Verma, Yu Funahashi, Yogesh Dwivedi. Deciphering the epigenetic role of long non-coding RNAs in mood disorders: Focus on human brain studies. Clinical and Translational Medicine, 2025, 15(3): e70135 DOI:10.1002/ctm2.70135

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Price JL, Drevets WC. Neural circuits underlying the pathophysiology of mood disorders. Trends Cogn Sci. 2012;16(1):61-71.

[2]

Kessler RC, Chiu WT, Demler O, Merikangas KR, Walters EE. Prevalence, severity, and comorbidity of 12-month DSM-IV disorders in the National Comorbidity Survey Replication. Arch Gen Psychiatry. 2005;62(6):617-627.

[3]

Merikangas KR, He JP, Burstein M, et al. Lifetime prevalence of mental disorders in U.S. adolescents: results from the National Comorbidity Survey Replication–Adolescent Supplement (NCS-A). J Am Acad Child Adolesc Psychiatry. 2010;49(10):980-989.

[4]

Loftus J, Scott J, Vorspan F, et al. Psychiatric comorbidities in bipolar disorders: an examination of the prevalence and chronology of onset according to sex and bipolar subtype. J Affect Disord. 2020;267:258-263.

[5]

Collaborators C-MD. Global prevalence and burden of depressive and anxiety disorders in 204 countries and territories in 2020 due to the COVID-19 pandemic. Lancet (London, England). 2021;398(10312):1700-1712.

[6]

Hasin DS, Sarvet AL, Meyers JL, et al. Epidemiology of adult DSM-5 major depressive disorder and its specifiers in the United States. JAMA psychiatry. 2018;75(4):336-346.

[7]

Dome P, Rihmer Z, Gonda X. Suicide risk in bipolar disorder: a brief review. Medicina (Kaunas). 2019;55(8):403.

[8]

Cai H, Xie XM, Zhang Q, et al. Prevalence of suicidality in major depressive disorder: a systematic review and meta-analysis of comparative studies. Frontiers in psychiatry. 2021;12:690130.

[9]

McGowan PO, Kato T. Epigenetics in mood disorders. Environ Health Prev Med. 2008;13(1):16-24.

[10]

Bonacina G, Carollo A, Esposito G. The genetic side of the mood: a scientometric review of the genetic basis of mood disorders. Genes. 2023;14(2):352.

[11]

Marcolongo-Pereira C, Castro F, Barcelos RM, et al. Neurobiological mechanisms of mood disorders: stress vulnerability and resilience. Front Behav Neurosci. 2022;16:1006836.

[12]

Bristot G, De Bastiani MA, Pfaffenseller B, Kapczinski F, Kauer-Sant’Anna M. Gene regulatory network of dorsolateral prefrontal cortex: a master regulator analysis of major psychiatric disorders. Mol Neurobiol. 2020;57(3):1305-1316.

[13]

Mokhtari A, Porte B, Belzeaux R, et al. The molecular pathophysiology of mood disorders: from the analysis of single molecular layers to multi-omic integration. Prog Neuropsychopharmacol Biol Psychiatry. 2022;116:110520.

[14]

Gibbons A, Sundram S, Dean B. Changes in non-coding RNA in depression and bipolar disorder: can they be used as diagnostic or theranostic biomarkers?. Non-coding RNA. 2020;6(3):33.

[15]

Hosseini E, Bagheri-Hosseinabadi Z, De Toma I, Jafarisani M, Sadeghi I. The importance of long non-coding RNAs in neuropsychiatric disorders. Mol Aspects Med. 2019;70:127-140.

[16]

Huang X, Luo YL, Mao YS, Ji JL. The link between long noncoding RNAs and depression. Prog Neuropsychopharmacol Biol Psychiatry. 2017;73:73-78.

[17]

Ang CE, Trevino AE, Chang HY. Diverse lncRNA mechanisms in brain development and disease. Curr Opin Genet Dev. 2020;65:42-46.

[18]

Ferrer J, Dimitrova N. Transcription regulation by long non-coding RNAs: mechanisms and disease relevance. Nat Rev Mol Cell Biol. 2024;25(5):396-415.

[19]

Statello L, Guo CJ, Chen LL, Huarte M. Gene regulation by long non-coding RNAs and its biological functions. Nat Rev Mol Cell Biol. 2021;22(2):96-118.

[20]

Herman AB, Tsitsipatis D, Gorospe M. Integrated lncRNA function upon genomic and epigenomic regulation. Mol Cell. 2022;82(12):2252-2266.

[21]

Pierce JB, Zhou H, Simion V, Feinberg MW. Long noncoding RNAs as therapeutic targets. Adv Exp Med Biol. 2022;1363:161-175.

[22]

Kopp F, Mendell JT. Functional classification and experimental dissection of long noncoding RNAs. Cell. 2018;172(3):393-407.

[23]

Frankish A, Carbonell-Sala S, Diekhans M, et al. GENCODE: reference annotation for the human and mouse genomes in 2023. Nucleic Acids Res. 2023;51(D1):D942-D949.

[24]

Uszczynska-Ratajczak B, Lagarde J, Frankish A, Guigo R, Johnson R. Towards a complete map of the human long non-coding RNA transcriptome. Nat Rev Genet. 2018;19(9):535-548.

[25]

Harrow J, Frankish A, Gonzalez JM, et al. GENCODE: the reference human genome annotation for The ENCODE Project. Genome Res. 2012;22(9):1760-1774.

[26]

Graf J, Kretz M. From structure to function: route to understanding lncRNA mechanism. Bioessays. 2020;42(12):e2000027.

[27]

Jarroux J, Morillon A, Pinskaya M. History, discovery, and classification of lncRNAs. Adv Exp Med Biol. 2017;1008:1-46.

[28]

St Laurent G, Wahlestedt C, Kapranov P. The landscape of long noncoding RNA classification. Trends Genet. 2015;31(5):239-251.

[29]

Nojima T, Proudfoot NJ. Mechanisms of lncRNA biogenesis as revealed by nascent transcriptomics. Nat Rev Mol Cell Biol. 2022;23(6):389-406.

[30]

Quinn JJ, Chang HY. Unique features of long non-coding RNA biogenesis and function. Nat Rev Genet. 2016;17(1):47-62.

[31]

Bridges MC, Daulagala AC, Kourtidis A. LNCcation: lncRNA localization and function. J Cell Biol. 2021;220(2):e202009045.

[32]

Ferre F, Colantoni A, Helmer-Citterich M. Revealing protein-lncRNA interaction. Briefings Bioinf. 2016;17(1):106-116.

[33]

Ishteyaq Majeed S, Mashooq Ahmad D, Kaiser Ahmad B, Tashook Ahmad D, Fayaz A, Syed Mudasir A. Long non-coding RNAs: biogenesis, mechanism of action and role in different biological and pathological processes. In: Lütfi T, ed. Recent Advances in Noncoding RNAs. IntechOpen; 2022. p Ch. 2.

[34]

Liau WS, Samaddar S, Banerjee S, Bredy TW. On the functional relevance of spatiotemporally-specific patterns of experience-dependent long noncoding RNA expression in the brain. RNA biology. 2021;18(7):1025-1036.

[35]

Zhang X, Wang W, Zhu W, et al. Mechanisms and functions of long non-coding RNAs at multiple regulatory levels. Int. J. Mol. Sci. 2019;20(22):5573.

[36]

Bure IV, Nemtsova MV, Kuznetsova EB. Histone modifications and non-coding RNAs: mutual epigenetic regulation and role in pathogenesis. Int. J. Mol. Sci. 2022;23(10):5801.

[37]

Bohmdorfer G, Wierzbicki AT. Control of chromatin structure by long noncoding RNA. Trends Cell Biol. 2015;25(10):623-632.

[38]

Long Y, Wang X, Youmans DT, Cech TR. How do lncRNAs regulate transcription?. Sci Adv. 2017;3(9):eaao2110.

[39]

Li Y, Li X, Yang Y, et al. TRlnc: a comprehensive database for human transcriptional regulatory information of lncRNAs. Briefings Bioinf. 2020;22(2):1929-1939.

[40]

He RZ, Luo DX, Mo YY. Emerging roles of lncRNAs in the post-transcriptional regulation in cancer. Genes Dis. 2019;6(1):6-15.

[41]

Zhang G, Song C, Fan S, et al. LncSEA 2.0: an updated platform for long non-coding RNA related sets and enrichment analysis. Nucleic Acids Res. 2023;52(D1):D919-D928.

[42]

Mishra K, Kanduri C. Understanding long noncoding RNA and chromatin interactions: what we know so far. Non-coding RNA. 2019;5(4):54.

[43]

Shibayama Y, Fanucchi S, Magagula L, Mhlanga MM. lncRNA and gene looping: what’s the connection?. Transcription. 2014;5(3):e28658.

[44]

West JA, Davis CP, Sunwoo H, et al. The long noncoding RNAs NEAT1 and MALAT1 bind active chromatin sites. Mol Cell. 2014;55(5):791-802.

[45]

Wang Z, Zhao Y, Xu N, et al. NEAT1 regulates neuroglial cell mediating Aβ clearance via the epigenetic regulation of endocytosis-related genes expression. Cell Mol Life Sci. 2019;76(15):3005-3018.

[46]

Butler AA, Johnston DR, Kaur S, Lubin FD. Long noncoding RNA NEAT1 mediates neuronal histone methylation and age-related memory impairment. Sci Signal. 2019;12(588):eaaw9277.

[47]

Wang A, Wang J, Liu Y, Zhou Y. Mechanisms of long non-coding RNAs in the assembly and plasticity of neural circuitry. Frontiers in Neural Circuits. 2017;11:76.

[48]

Madugalle SU, Liau W-S, Zhao Q, et al. Synapse-enriched m6A-modified malat1 interacts with the novel m6A reader, DPYSL2, and is required for fear-extinction memory. The Journal of Neuroscience. 2023;43(43):7084-7100.

[49]

Wang L, Li S, Stone SS, et al. The role of the lncRNA MALAT1 in neuroprotection against hypoxic/ischemic injury. Biomolecules. 2022;12(1):146.

[50]

Wu N, Cheng C-J, Zhong J-J, et al. Essential role of MALAT1 in reducing traumatic brain injury. Neural Regeneration Research. 2022;17(8):1776-1784.

[51]

Srinivas T, Mathias C, Oliveira-Mateos C, Guil S. Roles of lncRNAs in brain development and pathogenesis: emerging therapeutic opportunities. Mol Ther. 2023;31(6):1550-1561.

[52]

Zimmer-Bensch G. Emerging roles of long non-coding RNAs as drivers of brain evolution. Cells. 2019;8(11):1399.

[53]

Policarpo R, Sierksma A, De Strooper B, d’Ydewalle C. From junk to function: lncRNAs in CNS health and disease. Frontiers in molecular neuroscience. 2021;14:714768.

[54]

Chouvardas P, Zimmerli M, Hanhart D, et al, TransCistor reveals the landscape of cis-regulatory long noncoding RNAs. bioRxiv. 2022, 2022.09.18.508380.

[55]

Kim YW, Lee S, Yun J, Kim A. Chromatin looping and eRNA transcription precede the transcriptional activation of gene in the β-globin locus. Biosci Rep. 2015;35(2):e00179.

[56]

Arnold PR, Wells AD, Li XC. Diversity and emerging roles of enhancer RNA in regulation of gene expression and cell fate. Front Cell Dev Biol. 2019;7:377.

[57]

Song C, Zhang G, Mu X, et al. eRNAbase: a comprehensive database for decoding the regulatory eRNAs in human and mouse. Nucleic Acids Res. 2023;52(D1):D81-D91.

[58]

Chen Q, Zeng Y, Kang J, et al. Enhancer RNAs in transcriptional regulation: recent insights. Front Cell Dev Biol. 2023;11:1205540.

[59]

Nickerson JA, Momen-Heravi F. Long non-coding RNAs: roles in cellular stress responses and epigenetic mechanisms regulating chromatin. Nucleus. 2024;15(1):2350180.

[60]

Hou Y, Zhang R, Sun X. Enhancer LncRNAs influence chromatin interactions in different ways. Front Genet. 2019;10:936.

[61]

Yang Z, Xu F, Teschendorff AE, et al. Insights into the role of long non-coding RNAs in DNA methylation mediated transcriptional regulation. Front Mol Biosci. 2022;9:1067406.

[62]

Srinivas T, Mathias C, Oliveira-Mateos C, Guil S. Roles of lncRNAs in brain development and pathogenesis: emerging therapeutic opportunities. Mol Ther. 2023;31(6):1550-1561.

[63]

Mattick JS, Amaral PP, Carninci P, et al. Long non-coding RNAs: definitions, functions, challenges and recommendations. Nat Rev Mol Cell Biol. 2023;24(6):430-447.

[64]

Sas-Nowosielska H, Magalska A. Long noncoding RNAs-crucial players organizing the landscape of the neuronal nucleus. Int. J. Mol. Sci. 2021;22(7):3478.

[65]

Bhagat R, Minaya MA, Renganathan A, et al, Long non-coding RNA SNHG8 drives stress granule formation in tauopathies. medRxiv. 2023.

[66]

Aillaud M, Schulte LN. Emerging roles of long noncoding RNAs in the cytoplasmic milieu. Non-coding RNA. 2020;6(4):44.

[67]

Alammari F, Al-Hujaily EM, Alshareeda A, Albarakati N, Al-Sowayan BS. Hidden regulators: the emerging roles of lncRNAs in brain development and disease. Front Neurosci. 2024;18:1392688.

[68]

Briata P, Gherzi R. Long non-coding RNA-ribonucleoprotein networks in the post-transcriptional control of gene expression. Non-coding RNA. 2020;6(3):40.

[69]

Wang KC, Chang HY. Molecular mechanisms of long noncoding RNAs. Mol Cell. 2011;43(6):904-914.

[70]

Kang J, Chung A, Suresh S, et al, Environmental regulation of gene expression mediated by Long non-coding RNAs. bioRxiv. 2022, 2022.06.17.496488.

[71]

Wang S, Tang L, Huang N, Wang H. The roles of long noncoding RNA in depression. Frontiers in bioscience (Landmark edition). 2023;28(11):321.

[72]

Hao WZ, Chen Q, Wang L, et al. Emerging roles of long non-coding RNA in depression. Prog Neuropsychopharmacol Biol Psychiatry. 2022;115:110515.

[73]

Jovcevska I, Videtic Paska A. Neuroepigenetics of psychiatric disorders: focus on lncRNA. Neurochem Int. 2021;149:105140.

[74]

Rusconi F, Battaglioli E, Venturin M. Psychiatric disorders and lncRNAs: a synaptic match. Int. J. Mol. Sci. 2020;21(9):3030.

[75]

Zhou Y, Lutz PE, Wang YC, Ragoussis J, Turecki G. Global long non-coding RNA expression in the rostral anterior cingulate cortex of depressed suicides. Translational psychiatry. 2018;8(1):224.

[76]

Sakamoto K, Karelina K, Obrietan K. CREB: a multifaceted regulator of neuronal plasticity and protection. J Neurochem. 2011;116(1):1-9.

[77]

Pruunsild P, Bengtson CP, Loss I, Lohrer B, Bading H. Expression of the primate-specific <em>LINC00473</em>RNA in mouse neurons promotes excitability and CREB-regulated transcription. J Biol Chem. 2023;299(5):104671.

[78]

Alboni S, Tascedda F, Corsini D, et al. Stress induces altered CRE/CREB pathway activity and BDNF expression in the hippocampus of glucocorticoid receptor-impaired mice. Neuropharmacology. 2011;60(7):1337-1346.

[79]

Issler O, van der Zee YY, Ramakrishnan A, et al. Sex-specific role for the long non-coding RNA LINC00473 in depression. Neuron. 2020;106(6):912-926.e5.

[80]

Cuttoli RD-D, Issler O, Yakubov B, et al, Sex differences in change-of-mind neuroeconomic decision-making is modulated by LINC00473 in medial prefrontal cortex. bioRxiv. 2024, 2024.05.08.592609.

[81]

Issler O, van der Zee YY, Ramakrishnan A, et al. The long noncoding RNA FEDORA is a cell type-and sex-specific regulator of depression. Sci Adv. 2022;8(48):eabn9494.

[82]

Punzi G, Ursini G, Viscanti G, et al. Association of a noncoding RNA postmortem with suicide by violent means and in vivo with aggressive phenotypes. Biol Psychiatry. 2019;85(5):417-424.

[83]

Yrondi A, Fiori LM, Nogovitsyn N, et al. Association between the expression of lncRNA BASP-AS1 and volume of right hippocampal tail moderated by episode duration in major depressive disorder: a CAN-BIND 1 report. Translational psychiatry. 2021;11(1):469.

[84]

Luykx JJ, Giuliani F, Giuliani G, Veldink J. Coding and non-coding RNA abnormalities in bipolar disorder. Genes. 2019;10(11):946.

[85]

Zhou L, Jones EV, Murai KK. EphA signaling promotes actin-based dendritic spine remodeling through slingshot phosphatase. J Biol Chem. 2012;287(12):9346-9359.

[86]

Hruska M, Dalva MB. Ephrin regulation of synapse formation, function and plasticity. Molecular and cellular neurosciences. 2012;50(1):35-44.

[87]

Soraggi-Frez C, Santos FH, Albuquerque PB, Malloy-Diniz LF. Disentangling working memory functioning in mood states of bipolar disorder: a systematic review. Frontiers in psychology. 2017;8:574.

[88]

Roy B, Verma AK, Hulwi EM, Dwivedi YD. Circulating long noncoding RNA: new frontiers in biomarker research for mood disorders. Genomic Psychiatry. 2024;1:1-13.

[89]

Espadas I, Wingfield JL, Nakahata Y, et al. Synaptically-targeted long non-coding RNA SLAMR promotes structural plasticity by increasing translation and CaMKII activity. Nat Commun. 2024;15(1):2694.

[90]

Arzate-Mejia RG, Mansuy IM. Remembering through the genome: the role of chromatin states in brain functions and diseases. Translational psychiatry. 2023;13(1):122.

[91]

Peedicayil J. Identification of biomarkers in neuropsychiatric disorders based on systems biology and epigenetics. Front Genet. 2019;10:985.

[92]

Pisanu C, Squassina A. RNA biomarkers in bipolar disorder and response to mood stabilizers. Int. J. Mol. Sci. 2023;24(12):10067.

[93]

Shi Y, Wang Q, Song R, Kong Y, Zhang Z. Non-coding RNAs in depression: promising diagnostic and therapeutic biomarkers. EBioMedicine. 2021;71:103569.

[94]

Chen R, Cui Z, Capitão L, Wang G, Satterthwaite TD, Harmer C. Precision biomarkers for mood disorders based on brain imaging. BMJ. 2020;371:m3618.

[95]

Anna T-R, Katrin A, Sevdalina K, Rositsa P, Drozdstoy S. The translational potential of non-coding RNAs and multimodal MRI data sets as diagnostic and differential diagnostic biomarkers for mood disorders. Curr Top Med Chem. 2021;21(11):949-963.

[96]

Zhao K, Chen P, Alexander-Bloch A, et al. A neuroimaging biomarker for individual brain-related abnormalities in neurodegeneration (IBRAIN):a cross-sectional study. eClinicalMedicine. 2023;65:102276.

[97]

Wang WE, Asken BM, DeSimone JC, et al. Neuroimaging and biofluid biomarkers across race and ethnicity in older adults across the spectrum of cognition. Ageing Res Rev. 2024;101:102507.

[98]

Huang J, Hou X, Li M, et al. A preliminary composite of blood-based biomarkers to distinguish major depressive disorder and bipolar disorder in adolescents and adults. BMC Psychiatry. 2023;23(1):755.

[99]

Mousten IV, Sørensen NV, Christensen RHB, Benros ME. Cerebrospinal fluid biomarkers in patients with unipolar depression compared with healthy control individuals: a systematic review and meta-analysis. JAMA psychiatry. 2022;79(6):571-581.

[100]

Sørensen NV, Orlovska-Waast S, Jeppesen R, Klein-Petersen AW, Christensen RHB, Benros ME. Neuroinflammatory biomarkers in cerebrospinal fluid from 106 patients with recent-onset depression compared with 106 individually matched healthy control subjects. Biol Psychiatry. 2022;92(7):563-572.

[101]

Isgren A, Göteson A, Holmén-Larsson J, et al. Cerebrospinal fluid proteomic study of two bipolar disorder cohorts. Mol Psychiatry. 2022;27(11):4568-4574.

[102]

García-Gutiérrez MS, Navarrete F, Sala F, Gasparyan A, Austrich-Olivares A, Manzanares J. Biomarkers in psychiatry: concept, definition, types and relevance to the clinical reality. Frontiers in psychiatry. 2020;11:432.

[103]

Sun T-H, Wang C-C, Wu Y-L, Hsu K-C, Lee T-H. Machine learning approaches for biomarker discovery to predict large-artery atherosclerosis. Sci Rep. 2023;13(1):15139.

[104]

Rykov YG, Ng KP, Patterson MD, Gangwar BA, Kandiah N. Predicting the severity of mood and neuropsychiatric symptoms from digital biomarkers using wearable physiological data and deep learning. Comput Biol Med. 2024;180:108959.

[105]

Yassin W, Loedige KM, Wannan CMJ, et al. Biomarker discovery using machine learning in the psychosis spectrum. Biomarkers in Neuropsychiatry. 2024;11:100107.

[106]

Videtič Paska A, Kouter K. Machine learning as the new approach in understanding biomarkers of suicidal behavior. Bosn J Basic Med Sci. 2021;21(4):398-408.

[107]

Ricka N, Pellegrin G, Fompeyrine DA, Lahutte B, Geoffroy PA. Predictive biosignature of major depressive disorder derived from physiological measurements of outpatients using machine learning. Sci Rep. 2023;13(1):6332.

[108]

Winkle M, El-Daly SM, Fabbri M, Calin GA. Noncoding RNA therapeutics—challenges and potential solutions. Nat. Rev. Drug Discov. 2021;20(8):629-651.

[109]

Hu B, Zhong L, Weng Y, et al. Therapeutic siRNA: state of the art. Signal Transduct Target Ther. 2020;5(1):101.

[110]

Zibitt MS, Hartford CCR, Lal A. Interrogating lncRNA functions via CRISPR/Cas systems. RNA biology. 2021;18(12):2097-2106.

[111]

Sharma RK, Calderon C, Vivas-Mejia PE. Targeting non-coding RNA for glioblastoma therapy: the challenge of overcomes the blood-brain barrier. Front Med Technol. 2021;3:678593.

[112]

Padmakumar S, Jones G, Pawar G, et al. Minimally Invasive Nasal Depot (MIND) technique for direct BDNF AntagoNAT delivery to the brain. Journal of controlled release: official journal of the Controlled Release Society. 2021;331:176-186.

[113]

Yang L, Han B, Zhang Z, et al. Extracellular vesicle-mediated delivery of circular RNA SCMH1 promotes functional recovery in rodent and nonhuman primate ischemic stroke models. Circulation. 2020;142(6):556-574.

[114]

Nieland L, Mahjoum S, Grandell E, Breyne K, Breakefield XO. Engineered EVs designed to target diseases of the CNS. J Controlled Release. 2023;356:493-506.

[115]

Khorkova O, Stahl J, Joji A, Volmar CH, Wahlestedt C. Amplifying gene expression with RNA-targeted therapeutics. Nat. Rev. Drug Discov. 2023;22(7):539-561.

[116]

Shi Y, Parag S, Patel R, et al. Stabilization of lncRNA GAS5 by a small molecule and its implications in diabetic adipocytes. Cell chemical biology. 2019;26(3):319-330.e6.

[117]

Song Y, Cui J, Zhu J, Kim B, Kuo M-L, Potts PR. RNATACs: multispecific small molecules targeting RNA by induced proximity. Cell chemical biology. 2024;31(6):1101-1117.

[118]

Patel RS, Lui A, Hudson C, et al. Small molecule targeting long noncoding RNA GAS5 administered intranasally improves neuronal insulin signaling and decreases neuroinflammation in an aged mouse model. Sci Rep. 2023;13(1):317.

[119]

Fatemi RP, Velmeshev D, Faghihi MA. De-repressing lncRNA-targeted genes to upregulate gene expression: focus on small molecule therapeutics. Molecular Therapy Nucleic Acids. 2014;3(11):e196.

[120]

Ickenstein LM, Garidel P. Lipid-based nanoparticle formulations for small molecules and RNA drugs. Expert Opin Drug Deliv. 2019;16(11):1205-1226.

[121]

Nong J, Glassman PM, Shuvaev VV, et al. Targeting lipid nanoparticles to the blood-brain barrier to ameliorate acute ischemic stroke. Mol Ther. 2024;32(5):1344-1358.

[122]

Kukharsky MS, Ninkina NN, An H, et al. Long non-coding RNA Neat1 regulates adaptive behavioural response to stress in mice. Translational psychiatry. 2020;10(1):171.

[123]

Zhu Y, Zhu L, Wang X, Jin H. RNA-based therapeutics: an overview and prospectus. Cell Death Dis. 2022;13(7):644.

[124]

Chen X, Mangala LS, Rodriguez-Aguayo C, Kong X, Lopez-Berestein G, Sood AK. RNA interference-based therapy and its delivery systems. Cancer Metastasis Rev. 2018;37(1):107-124.

[125]

Sparmann A, Vogel J. RNA-based medicine: from molecular mechanisms to therapy. EMBO J. 2023;42(21):e114760.

RIGHTS & PERMISSIONS

2025 The Author(s). Clinical and Translational Medicine published by John Wiley & Sons Australia, Ltd on behalf of Shanghai Institute of Clinical Bioinformatics.

AI Summary AI Mindmap
PDF

232

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/