Machine learning-based multi-omics models for diagnostic classification and risk stratification in diabetic kidney disease

Xian Shao , Suhua Gao , Pufei Bai , Qian Yang , Yao Lin , Mingzhen Pang , Weixi Wu , Lihua Wang , Ying Li , Saijun Zhou , Hongyan Liu , Pei Yu

Clinical and Translational Medicine ›› 2025, Vol. 15 ›› Issue (1) : e70133

PDF
Clinical and Translational Medicine ›› 2025, Vol. 15 ›› Issue (1) : e70133 DOI: 10.1002/ctm2.70133
LETTER TO THE JOURNAL

Machine learning-based multi-omics models for diagnostic classification and risk stratification in diabetic kidney disease

Author information +
History +
PDF

Cite this article

Download citation ▾
Xian Shao, Suhua Gao, Pufei Bai, Qian Yang, Yao Lin, Mingzhen Pang, Weixi Wu, Lihua Wang, Ying Li, Saijun Zhou, Hongyan Liu, Pei Yu. Machine learning-based multi-omics models for diagnostic classification and risk stratification in diabetic kidney disease. Clinical and Translational Medicine, 2025, 15(1): e70133 DOI:10.1002/ctm2.70133

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Kovesdy CP. Epidemiology of chronic kidney disease: an update 2022. Kidney Int Suppl. 2022;12(1):7-11.

[2]

Kidney Disease: Improving Global Outcomes Diabetes Work G. KDIGO 2022 clinical practice guideline for diabetes management in chronic kidney disease. Kidney Int. 2022;102(5S):S1-S127.

[3]

Skolnik NS, Style AJ. Importance of early screening and diagnosis of chronic kidney disease in patients with type 2 diabetes. Diabetes Ther. 2021;12(6):1613-1630.

[4]

Eddy S, Mariani LH, Kretzler M. Integrated multi-omics approaches to improve classification of chronic kidney disease. Nat Rev Nephrol. 2020;16(11):657-668.

RIGHTS & PERMISSIONS

2025 The Author(s). Clinical and Translational Medicine published by John Wiley & Sons Australia, Ltd on behalf of Shanghai Institute of Clinical Bioinformatics.

AI Summary AI Mindmap
PDF

91

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/