Epithelial NSD2 maintains FMO-mediated taurine biosynthesis to prevent intestinal barrier disruption

Yue Xu , Xiuying Xiao , Chunxiao Ma , Ziyi Wang , Wenxin Feng , Hanyu Rao , Wei Zhang , Ningyuan Liu , Rebiguli Aji , Xiangjun Meng , Wei-Qiang Gao , Li Li

Clinical and Translational Medicine ›› 2024, Vol. 14 ›› Issue (12) : e70128

PDF
Clinical and Translational Medicine ›› 2024, Vol. 14 ›› Issue (12) : e70128 DOI: 10.1002/ctm2.70128
RESEARCH ARTICLE

Epithelial NSD2 maintains FMO-mediated taurine biosynthesis to prevent intestinal barrier disruption

Author information +
History +
PDF

Abstract

•In this study, we investigated the role of the histone methyltransferase NSD2 in preventing intestinal barrier disruption by sustaining taurine biosynthesis. NSD2 levels were reduced in both human specimens and mouse models of IBD. We demonstrate that NSD2 loss hinders the process of taurine synthesis in intestinal cells, leading to increased intestinal inflammation.

•Supplementation with taurine significantly relieved the symptoms caused by NSD2 deficiency. These data suggest that maintenance of NSD2-mediated taurine biosynthesis is vital for preserving the intestinal barrier and attenuating inflammation.

Keywords

histone methylation / IBD / intestinal epithelial homeostasis / NSD2 / taurine biosynthesis

Cite this article

Download citation ▾
Yue Xu, Xiuying Xiao, Chunxiao Ma, Ziyi Wang, Wenxin Feng, Hanyu Rao, Wei Zhang, Ningyuan Liu, Rebiguli Aji, Xiangjun Meng, Wei-Qiang Gao, Li Li. Epithelial NSD2 maintains FMO-mediated taurine biosynthesis to prevent intestinal barrier disruption. Clinical and Translational Medicine, 2024, 14(12): e70128 DOI:10.1002/ctm2.70128

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

RudbaekJJ, Agrawal M, TorresJ, MehandruS, Colombel JF, JessT. Deciphering the different phases of preclinical inflammatory bowel disease. Nat Rev Gastroenterol Hepatol. 2024; 21(2): 86-100.

[2]

NgSC, ShiHY, HamidiN, et al. Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population-based studies. The Lancet. 2017; 390(10114): 2769-2778.

[3]

LorzadehA, Romero-Wolf M, GoelA, JadhavU. Epigenetic regulation of intestinal stem cells and disease: a balancing act of DNA and histone methylation. Gastroenterology. 2021; 160(7): 2267-2282.

[4]

XuJ, XuH, YangM, et al. New insights into the epigenetic regulation of inflammatory bowel disease. Front Pharmacol. 2022; 13: 813659.

[5]

JužnićL, Peuker K, StrigliA, et al. SETDB1 is required for intestinal epithelial differentiation and the prevention of intestinal inflammation. Gut. 2021; 70(3): 485-498.

[6]

FazioA, Bordoni D, KuiperJWP, et al. DNA methyltransferase 3A controls intestinal epithelial barrier function and regeneration in the colon. Nat Commun. 2022; 13(1): 6266.

[7]

LewisA, Humphreys DT, Pan-CastilloB, et al. Epigenetic and metabolic reprogramming of fibroblasts in Crohn’s disease strictures reveals histone deacetylases as therapeutic targets. J Crohns Colitis. 2023; 18(6): 895-907.

[8]

LiuM, SunT, LiN, et al. BRG1 attenuates colonic inflammation and tumorigenesis through autophagy-dependent oxidative stress sequestration. Nat Commun. 2019; 10(1): 4614.

[9]

LiuM, RaoH, LiuJ, et al. The histone methyltransferase SETD2 modulates oxidative stress to attenuate experimental colitis. Redox Biol. 2021; 43: 102004.

[10]

ZhaoZ, SuZ, LiangP, et al. USP38 couples histone ubiquitination and methylation via KDM5B to resolve inflammation. Adv Sci. 2020; 7(22): 2002680.

[11]

ZhengY, SweetSMM, PopovicR, et al. Total kinetic analysis reveals how combinatorial methylation patterns are established on lysines 27 and 36 of histone H3. Proc Natl Acad Sci U S A. 2012; 109(34): 13549-13554.

[12]

DilworthD, HanleyRP, Ferreira de FreitasR, et al. A chemical probe targeting the PWWP domain alters NSD2 nucleolar localization. Nat Chem Biol. 2022; 18(1): 56-63.

[13]

HanleyRP, NieDY, TaborJR, et al. Discovery of a potent and selective targeted NSD2 degrader for the reduction of H3K36me2. J Am Chem Soc. 2023; 145(14): 8176-8188.

[14]

LiW, TianW, YuanG, et al. Molecular basis of nucleosomal H3K36 methylation by NSD methyltransferases. Nature. 2021; 590(7846): 498-503.

[15]

SongD, LanJ, ChenY, et al. NSD2 promotes tumor angiogenesis through methylating and activating STAT3 protein. Oncogene. 2021; 40(16): 2952-2967.

[16]

ZhangY, QiaoY, LiZ, et al. Intestinal NSD2 aggravates nonalcoholic steatohepatitis through histone modifications. Adv Sci. 2024; 11(33): 2402551.

[17]

AdolphTE, MeyerM, SchwärzlerJ, MayrL, Grabherr F, TilgH. The metabolic nature of inflammatory bowel diseases. Nat Rev Gastroenterol Hepatol. 2022; 19(12): 753-767.

[18]

StacyA, Andrade-Oliveira V, McCullochJA, et al. Infection trains the host for microbiota-enhanced resistance to pathogens. Cell. 2021; 184(3): 615-627.

[19]

CaoT, ZhangW, WangQ, et al. Cancer SLC6A6-mediated taurine uptake transactivates immune checkpoint genes and induces exhaustion in CD8+ T cells. Cell. 2024; 187(9): 2288-2304.e27.

[20]

LiN, XueW, YuanH, et al. AKT-mediated stabilization of histone methyltransferase WHSC1 promotes prostate cancer metastasis. J Clin Invest. 2017; 127(4): 1284-1302.

[21]

WirtzS, PoppV, KindermannM, et al. Chemically induced mouse models of acute and chronic intestinal inflammation. Nat Protoc. 2017; 12(7): 1295-1309.

[22]

PerteaM, PerteaGM, AntonescuCM, Chang TC, MendellJT, SalzbergSL. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol. 2015; 33(3): 290-295.

[23]

FrazeeAC, PerteaG, JaffeAE, Langmead B, SalzbergSL, LeekJT. Ballgown bridges the gap between transcriptome assembly and expression analysis. Nat Biotechnol. 2015; 33(3): 243-246.

[24]

YuG, WangLG, HeQY. ChIPseeker: an R/Bioconductor package for ChIP peak annotation, comparison and visualization. Bioinformatics. 2015; 31(14): 2382-2383.

[25]

National Research Council (US). Committee for the update of the guide for the care and use of laboratory animals. Guide for the Care and Use of Laboratory Animals. 8th ed. Accessed April 16, 2024. National Academies Press; 2011. http://www.ncbi.nlm.nih.gov/books/NBK54050/

[26]

LiuM, SunT, LiN, et al. BRG1 attenuates colonic inflammation and tumorigenesis through autophagy-dependent oxidative stress sequestration. Nat Commun. 2019; 10(1): 1-15.

[27]

OdenwaldMA, TurnerJR. The intestinal epithelial barrier: a therapeutic target? Nat Rev Gastroenterol Hepatol. 2017; 14(1): 9-21.

[28]

HanX, PiaoL, XuX, LuoF, LiuZ, HeX. NSD2 promotes renal cancer progression through stimulating Akt/Erk signaling. Cancer Manag Res. 2020; 12: 375-383.

[29]

HeC, LiuC, WangL, Sun Y, JiangY, HaoY. Histone methyltransferase NSD2 regulates apoptosis and chemosensitivity in osteosarcoma. Cell Death Dis. 2019; 10(2): 1-13.

[30]

LiM, ChenH, YangX, et al. Conditional knockout of the NSD2 gene in mouse intestinal epithelial cells inhibits colorectal cancer progression. Anim Models Exp Med. 2024.

[31]

Stangl-KremserJ, Lemberger U, HasslerMR, et al. The prognostic impact of tumour NSD2 expression in advanced prostate cancer. Biomarkers. 2020; 25(3): 268-273.

[32]

FoltzSM, GaoQ, YoonCJ, et al. Evolution and structure of clinically relevant gene fusions in multiple myeloma. Nat Commun. 2020; 11(1): 2666.

[33]

LiJ, Hlavka-Zhang J, ShrimpJH, et al. PRC2 inhibitors overcome glucocorticoid resistance driven by NSD2 mutation in pediatric acute lymphoblastic leukemia. Cancer Discov. 2022; 12(1): 186-203.

[34]

SenguptaD, ZengL, LiY, et al. NSD2 dimethylation at H3K36 promotes lung adenocarcinoma pathogenesis. Mol Cell. 2021; 81(21): 4481-4492.

[35]

SongD, HuF, HuangC, et al. Tiam1 methylation by NSD2 promotes Rac1 signaling activation and colon cancer metastasis. Proc Natl Acad Sci U S A. 2023; 120(52): e2305684120.

[36]

WantMY, TsujiT, SinghPK, et al. WHSC1/NSD2 regulates immune infiltration in prostate cancer. J Immunother Cancer. 2021; 9(2): e001374.

[37]

HeL, YuC, QinS, et al. The proteasome component PSMD14 drives myelomagenesis through a histone deubiquitinase activity. Mol Cell. 2023; 83(22): 4000-4016.

[38]

TanakaH, IgataT, EtohK, Koga T, TakebayashiSI, NakaoM. The NSD2/WHSC1/MMSET methyltransferase prevents cellular senescence-associated epigenomic remodeling. Aging Cell. 2020; 19(7): e13173.

[39]

WangJJ, ZouJX, WangH, et al. Histone methyltransferase NSD2 mediates the survival and invasion of triple-negative breast cancer cells via stimulating ADAM9-EGFR-AKT signaling. Acta Pharmacol Sin. 2019; 40(8): 1067-1075.

[40]

ChenR, ChenY, ZhaoW, et al. The role of methyltransferase NSD2 as a potential oncogene in human solid tumors. OncoTargets Ther. 2020; 13: 6837-6846.

[41]

ZhangJ, LeeYR, DangF, et al. PTEN methylation by NSD2 controls cellular sensitivity to DNA damage. Cancer Discov. 2019; 9(9): 1306-1323.

[42]

ZhaoLH, LiQ, HuangZJ, et al. Identification of histone methyltransferase NSD2 as an important oncogenic gene in colorectal cancer. Cell Death Dis. 2021; 12(11): 1-10.

[43]

RenJ, LiN, PeiS, et al. Histone methyltransferase WHSC1 loss dampens MHC-I antigen presentation pathway to impair IFN-γ-stimulated antitumor immunity. J Clin Invest. 2022; 132(8): e153167.

[44]

TochitaniS. Taurine: a maternally derived nutrient linking mother and offspring. Metabolites. 2022; 12(3): 228.

[45]

SinghP, Gollapalli K, MangiolaS, et al. Taurine deficiency as a driver of aging. Science. 2023; 380(6649): eabn9257.

[46]

PreisingMN, Görg B, FriedburgC, et al. Biallelic mutation of human SLC6A6 encoding the taurine transporter TAUT is linked to early retinal degeneration. FASEB J. 2019; 33(10): 11507-11527.

[47]

ItoT, Schaffer SW, AzumaJ. The potential usefulness of taurine on diabetes mellitus and its complications. Amino Acids. 2012; 42(5): 1529-1539.

[48]

KimKS, OhDH, KimJY, et al. Taurine ameliorates hyperglycemia and dyslipidemia by reducing insulin resistance and leptin level in Otsuka Long-Evans Tokushima fatty (OLETF) rats with long-term diabetes. Exp Mol Med. 2012; 44(11): 665-673.

[49]

SuY, FanW, MaZ, et al. Taurine improves functional and histological outcomes and reduces inflammation in traumatic brain injury. Neuroscience. 2014; 266: 56-65.

[50]

LambertIH, Kristensen DM, HolmJB, MortensenOH. Physiological role of taurine—from organism to organelle. Acta Physiol. 2015; 213(1): 191-212.

[51]

MiyazakiT. Identification of a novel enzyme and the regulation of key enzymes in mammalian taurine synthesis. J Pharmacol Sci. 2024; 154(1): 9-17.

[52]

StipanukMH. Sulfur amino acid metabolism: pathways for production and removal of homocysteine and cysteine. Annu Rev Nutr. 2004; 24: 539-577.

[53]

VeeravalliS, Phillips IR, FreireRT, VarshaviD, Everett JR, ShephardEA. Flavin-containing monooxygenase 1 catalyzes the production of taurine from hypotaurine. Drug Metab Dispos. 2020; 48(5): 378-385.

[54]

BailleulG, YangG, NicollCR, Mattevi A, FraaijeMW, MascottiML. Evolution of enzyme functionality in the flavin-containing monooxygenases. Nat Commun. 2023; 14(1): 1042.

[55]

ChoiHS, BhatA, HowingtonMB, et al. FMO rewires metabolism to promote longevity through tryptophan and one carbon metabolism in C. elegans. Nat Commun. 2023; 14(1): 562.

[56]

AhmadiS, WangS, NagpalR, et al. A human-origin probiotic cocktail ameliorates aging-related leaky gut and inflammation via modulating the microbiota/taurine/tight junction axis. JCI Insight. 2020; 5(9): e132055.

[57]

ScottF, Malagon SGG, O’BrienBA, et al. Identification of flavin-containing monooxygenase 5 (FMO5) as a regulator of glucose homeostasis and a potential sensor of gut bacteria. Drug Metab Dispos. 2017; 45(9): 982-989.

[58]

LiuM, RaoH, LiuJ, et al. The histone methyltransferase SETD2 modulates oxidative stress to attenuate colonic inflammation and tumorigenesis in mice. Redox Biol. 2021; 43: 102004.

[59]

LiuY, PengJ, SunT, et al. Epithelial EZH2 serves as an epigenetic determinant in experimental colitis by inhibiting TNFα-mediated inflammation and apoptosis. Proc Natl Acad Sci U S A. 2017; 114(19): E3796-E3805.

[60]

de ZoetenEF, WangL, SaiH, Dillmann WH, HancockWW. Inhibition of HDAC9 increases T regulatory cell function and prevents colitis in mice. Gastroenterology. 2010; 138(2): 583-594.

[61]

ZhouJ, HuangS, WangZ, et al. Targeting EZH2 histone methyltransferase activity alleviates experimental intestinal inflammation. Nat Commun. 2019; 10(1): 2427.

[62]

WeinbergDN, Papillon-Cavanagh S, ChenH, et al. The histone mark H3K36me2 recruits DNMT3A and shapes the intergenic DNA methylation landscape. Nature. 2019; 573(7773): 281-286.

RIGHTS & PERMISSIONS

2024 The Author(s). Clinical and Translational Medicine published by John Wiley & Sons Australia, Ltd on behalf of Shanghai Institute of Clinical Bioinformatics.

AI Summary AI Mindmap
PDF

118

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/