Chaperonin-containing TCP1 subunit 6A inhibition via TRIM21-mediated K48-linked ubiquitination suppresses triple-negative breast cancer progression through the AKT signalling pathway

Mengdi Yang , Jianing Cao , Tiantian Liu , Bin Li , Jinyan Wang , Shuangyue Pan , Duancheng Guo , Zhonghua Tao , Xichun Hu

Clinical and Translational Medicine ›› 2024, Vol. 14 ›› Issue (11) : e70097

PDF
Clinical and Translational Medicine ›› 2024, Vol. 14 ›› Issue (11) : e70097 DOI: 10.1002/ctm2.70097
RESEARCH ARTICLE

Chaperonin-containing TCP1 subunit 6A inhibition via TRIM21-mediated K48-linked ubiquitination suppresses triple-negative breast cancer progression through the AKT signalling pathway

Author information +
History +
PDF

Abstract

•Chaperonin TCP1 subunit 6A (CCT6A) plays an oncogenic role in triple-negative breast cancer (TNBC) through the AKT signaling pathway.

•TRIM21 facilitated K48-linked ubiquitination-mediated degradation of CCT6A, thereby impeding TNBC progression.

•Our study collectively underscores the potential of Ipatasertib in conjunction with anti-PD1 therapy as a promising strategy to counteract CCT6A/AKT hyperactivity-driven TNBC progression.

Keywords

CCT6A / immunotherapy / TRIM21 / triple-negative breast cancer

Cite this article

Download citation ▾
Mengdi Yang, Jianing Cao, Tiantian Liu, Bin Li, Jinyan Wang, Shuangyue Pan, Duancheng Guo, Zhonghua Tao, Xichun Hu. Chaperonin-containing TCP1 subunit 6A inhibition via TRIM21-mediated K48-linked ubiquitination suppresses triple-negative breast cancer progression through the AKT signalling pathway. Clinical and Translational Medicine, 2024, 14(11): e70097 DOI:10.1002/ctm2.70097

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. CA Cancer J Clin. 2023;73(1):17-48.

[2]

Bianchini G, De Angelis C, Licata L, Gianni L. Treatment landscape of triple-negative breast cancer-expanded options, evolving needs. Nat Rev Clin Oncol. 2022;19(2):91-113.

[3]

Lee J. Current treatment landscape for early triple-negative breast cancer (TNBC). J Clin Med. 2023;12(4):1524.

[4]

Grasset EM, Dunworth M, Sharma G, et al. Triple-negative breast cancer metastasis involves complex epithelial-mesenchymal transition dynamics and requires vimentin. Sci Transl Med. 2022;14(656):eabn7571.

[5]

Yam AY, Xia Y, Lin HT, Burlingame A, Gerstein M, Frydman J. Defining the TRiC/CCT interactome links chaperonin function to stabilization of newly made proteins with complex topologies. Nat Struct Mol Biol. 2008;15(12):1255-1262.

[6]

Van Hove I, Verslegers M, Hu TT, Carden M, Arckens L, Moons L. A proteomic approach to understand MMP-3-driven developmental processes in the postnatal cerebellum: chaperonin CCT6A and MAP kinase as contributing factors. Dev Neurobiol. 2015;75(9):1033-1048.

[7]

Roskoski R Jr. ERK1/2 MAP kinases: structure, function, and regulation. Pharmacol Res. 2012;66(2):105-143.

[8]

Ying Z, Tian H, Li Y, et al. CCT6A suppresses SMAD2 and promotes prometastatic TGF-β signaling. J Clin Invest. 2017;127(5):1725-1740.

[9]

Ma YS, Huang T, Zhong XM, et al. Proteogenomic characterization and comprehensive integrative genomic analysis of human colorectal cancer liver metastasis. Mol Cancer. 2018;17(1):139.

[10]

Sun H, Wang Y, Jing HY, et al. Chaperonin-containing TCP1 subunit 6A is a prognostic potential biomarker that correlates with the presence of immune infiltrates in colorectal cancer. Front Genet. 2021;12:629856.

[11]

Hallal S, Russell BP, Wei H, et al. Extracellular vesicles from neurosurgical aspirates identifies chaperonin containing TCP1 subunit 6A as a potential glioblastoma biomarker with prognostic significance. Proteomics. 2019;19(1-2):e1800157.

[12]

He Y, Sun MM, Zhang GG, et al. Targeting PI3K/Akt signal transduction for cancer therapy. Signal Transduct Target Ther. 2021;6(1):425.

[13]

Zeng W, Wu M, Cheng Y, et al. CCT6A knockdown suppresses osteosarcoma cell growth and Akt pathway activation in vitro. PLoS One. 2022;17(12):e0279851.

[14]

Gao W, Li Y, Liu X, et al. TRIM21 regulates pyroptotic cell death by promoting Gasdermin D oligomerization. Cell Death Differ. 2022;29(2):439-450.

[15]

Alomari M. TRIM21 -A potential novel therapeutic target in cancer. Pharmacol Res. 2021;165:105443.

[16]

Lin X, Dinglin X, Cao S, et al. Enhancer-driven lncRNA BDNF-AS induces endocrine resistance and malignant progression of breast cancer through the RNH1/TRIM21/mTOR Cascade. Cell Rep. 2020;31(10):107753.

[17]

Xu C, Yang K, Xuan Z, et al. BCKDK regulates breast cancer cell adhesion and tumor metastasis by inhibiting TRIM21 ubiquitinate talin1. Cell Death Dis. 2023;14(7):445.

[18]

Fu Z, Chen S, Zhu Y, et al. Proteolytic regulation of CD73 by TRIM21 orchestrates tumor immunogenicity. Sci Adv. 2023;9(1):eadd6626.

[19]

Yang M, Li D, Jiang Z, et al. TGF-β-induced FLRT3 attenuation is essential for cancer-associated fibroblast-mediated epithelial-mesenchymal transition in colorectal cancer. Mol Cancer Res. 2022;20(8):1247-1259.

[20]

Fromowitz FB, Viola MV, Chao S, et al. ras p21 expression in the progression of breast cancer. Hum Pathol. 1987;18(12):1268-1275.

[21]

Haglund K, Dikic I. Ubiquitylation and cell signaling. Embo j. 2005;24(19):3353-3359.

[22]

Jabbarzadeh Kaboli P, Salimian F, Aghapour S, et al. Akt-targeted therapy as a promising strategy to overcome drug resistance in breast cancer-A comprehensive review from chemotherapy to immunotherapy. Pharmacol Res. 2020;156:104806.

[23]

Zhou BP, Liao Y, Xia W, Zou Y, Spohn B, Hung MC. HER-2/neu induces p53 ubiquitination via Akt-mediated MDM2 phosphorylation. Nat Cell Biol. 2001;3(11):973-982.

[24]

Mayer IA, Zhao F, Arteaga CL, et al. Randomized phase III postoperative trial of platinum-based chemotherapy versus capecitabine in patients with residual triple-negative breast cancer following neoadjuvant chemotherapy: ECOG-ACRIN EA1131. J Clin Oncol. 2021;39(23):2539-2551.

[25]

Korde LA, Somerfield MR, Carey LA, et al. Neoadjuvant chemotherapy, endocrine therapy, and targeted therapy for breast cancer: ASCO guideline. J Clin Oncol. 2021;39(13):1485-1505.

[26]

Radovich M, Jiang G, Hancock BA, et al. Association of circulating tumor DNA and circulating tumor cells after neoadjuvant chemotherapy with disease recurrence in patients with triple-negative breast cancer: preplanned secondary analysis of the BRE12-158 randomized clinical trial. JAMA Oncol. 2020;6(9):1410-1415.

[27]

Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019;69(1):7-34.

[28]

Chen X, Li Z, Yong H, et al. Trim21-mediated HIF-1α degradation attenuates aerobic glycolysis to inhibit renal cancer tumourigenesis and metastasis. Cancer Lett. 2021;508:115-126.

[29]

Li JY, Zhao Y, Gong S, et al. TRIM21 inhibits irradiation-induced mitochondrial DNA release and impairs antitumour immunity in nasopharyngeal carcinoma tumour models. Nat Commun. 2023;14(1):865.

[30]

Hu J, Han C, Zhong J, et al. Dynamic network biomarker of pre-exhausted CD8(+) T cells contributed to T cell exhaustion in colorectal cancer. Front Immunol. 2021;12:691142.

[31]

Ganesan K, Xu C, Wu J, et al. Ononin inhibits triple-negative breast cancer lung metastasis by targeting the EGFR-mediated PI3K/Akt/mTOR pathway. Sci China Life Sci. 2024;67(9):1849-1866.

[32]

Tang Y, Tian W, Zheng S, et al. Dissection of FOXO1-Induced LYPLAL1-DT impeding triple-negative breast cancer progression via mediating hnRNPK/β-Catenin complex. Research. 2023;6:0289.

[33]

Oliveira M, Saura C, Nuciforo P, et al. FAIRLANE, a double-blind placebo-controlled randomized phase II trial of neoadjuvant ipatasertib plus paclitaxel for early triple-negative breast cancer. Ann Oncol. 2019;30(8):1289-1297.

[34]

Turner NC, Oliveira M, Howell SJ, et al. Capivasertib in hormone receptor-positive advanced breast cancer. N Engl J Med. 2023;388(22):2058-2070.

RIGHTS & PERMISSIONS

2024 The Author(s). Clinical and Translational Medicine published by John Wiley & Sons Australia, Ltd on behalf of Shanghai Institute of Clinical Bioinformatics.

AI Summary AI Mindmap
PDF

186

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/