Dynamic conditioning of porcine kidney grafts with extracellular vesicles derived from urine progenitor cells: A proof-of-concept study

Perrine Burdeyron , Sébastien Giraud , Maryne Lepoittevin , Nina Jordan , Sonia Brishoual , Maïté Jacquard , Virginie Ameteau , Nadège Boildieu , Estelle Lemarie , Jonathan Daniel , Frédéric Martins , Nicolas Mélis , Marine Coué , Raphaël Thuillier , Henri Leuvenink , Luc Pellerin , Thierry Hauet , Clara Steichen

Clinical and Translational Medicine ›› 2024, Vol. 14 ›› Issue (12) : e70095

PDF
Clinical and Translational Medicine ›› 2024, Vol. 14 ›› Issue (12) : e70095 DOI: 10.1002/ctm2.70095
RESEARCH ARTICLE

Dynamic conditioning of porcine kidney grafts with extracellular vesicles derived from urine progenitor cells: A proof-of-concept study

Author information +
History +
PDF

Abstract

•UPCs from porcine urine can be used to generate a cell therapy product based on extracellular vesicles (pUPC-EVs).

•pUPC-EVs injection during HMP and NMP decreases cell damage markers and has an immunomodulatory effect.

•pUPC-EVs-treated kidneys have distinct biochemical, metabolic, and transcriptomic profiles highlighting targets of interest.

•Our results pave the way for combining machine perfusion with EV-based cell therapy for kidney conditioning.

Keywords

cell therapy / exosomes / extracellular vesicles / kidney preservation / kidney transplantation / machine perfusion / preclinical porcine model / urine progenitor/stem cells

Cite this article

Download citation ▾
Perrine Burdeyron, Sébastien Giraud, Maryne Lepoittevin, Nina Jordan, Sonia Brishoual, Maïté Jacquard, Virginie Ameteau, Nadège Boildieu, Estelle Lemarie, Jonathan Daniel, Frédéric Martins, Nicolas Mélis, Marine Coué, Raphaël Thuillier, Henri Leuvenink, Luc Pellerin, Thierry Hauet, Clara Steichen. Dynamic conditioning of porcine kidney grafts with extracellular vesicles derived from urine progenitor cells: A proof-of-concept study. Clinical and Translational Medicine, 2024, 14(12): e70095 DOI:10.1002/ctm2.70095

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Nieuwenhuijs-MoekeGJ, Pischke SE, BergerSP, et al. Ischemia and reperfusion injury in kidney transplantation: relevant mechanisms in injury and repair. J Clin Med. 2020; 9(1): 253.

[2]

MoersC, Pirenne J, PaulA, PloegRJ. Machine perfusion or cold storage in deceased-donor kidney transplantation. N Engl J Med. 2012; 366(8): 770-771.

[3]

HoogduijnMJ, Montserrat N, van der LaanLJW, et al. The emergence of regenerative medicine in organ transplantation: 1st European Cell Therapy and Organ Regeneration Section meeting. Transpl Int Off J Eur Soc Organ Transplant. 2020; 33(8): 833-840.

[4]

ErpicumP, Weekers L, DetryO, et al. Infusion of third-party mesenchymal stromal cells after kidney transplantation: a phase I-II, open-label, clinical study. Kidney Int. 2019; 95(3): 693-707.

[5]

SaidiRF, Moghadasali R, ShekarchianS. Utilization of mesenchymal stem cells in kidney transplantation: from bench to bedside. Iran J Kidney Dis. 2019; 13(4): 213-224.

[6]

VandermeulenM, Erpicum P, WeekersL, et al. Mesenchymal stromal cells in solid organ transplantation. Transplantation. 2020; 104(5): 923-936.

[7]

BaulierE, Favreau F, Le CorfA, et al. Amniotic fluid-derived mesenchymal stem cells prevent fibrosis and preserve renal function in a preclinical porcine model of kidney transplantation. Stem Cells Transl Med. 2014; 3(7): 809-820.

[8]

SteichenC, Erpicum P. Combining cell-based therapy and normothermic machine perfusion for kidney graft conditioning has gone one step further. Am J Transplant Off J Am Soc Transplant Am Soc Transpl Surg. 2021; 21(4): 1359-1360.

[9]

BelliniMI, Tortorici F, AmabileMI, D’Andrea V. Assessing kidney graft viability and its cells metabolism during machine perfusion. Int J Mol Sci. 2021; 22(3): 1121.

[10]

HosgoodSA, HoffM, NicholsonML. Treatment of transplant kidneys during machine perfusion. Transpl Int Off J Eur Soc Organ Transplant. 2021; 34(2): 224-232.

[11]

ThompsonER, BatesL, IbrahimIK, et al. Novel delivery of cellular therapy to reduce ischemia reperfusion injury in kidney transplantation. Am J Transplant Off J Am Soc Transplant Am Soc Transpl Surg. 2021; 21(4): 1402-1414.

[12]

ChatauretN, BadetL, BarrouB, Hauet T. Ischemia-reperfusion: from cell biology to acute kidney injury. Prog En Urol J Assoc Fr Urol Société Fr Urol. 2014; 24(1): S4-12.

[13]

GregoriniM, Corradetti V, PattonieriEF, et al. Perfusion of isolated rat kidney with mesenchymal stromal cells/extracellular vesicles prevents ischaemic injury. J Cell Mol Med. 2017; 21(12): 3381-3393.

[14]

NicholsonML, Hosgood SA. Renal transplantation after ex vivo normothermic perfusion: the first clinical study. Am J Transplant Off J Am Soc Transplant Am Soc Transpl Surg. 2013; 13(5): 1246-1252.

[15]

HosgoodSA, Nicholson ML. Ex vivo normothermic perfusion of declined human kidneys after inadequate in situ perfusion. Am J Transplant Off J Am Soc Transplant Am Soc Transpl Surg. 2014; 14(2): 490-491.

[16]

SteichenC, GiraudS, BonD, et al. Barriers and advances in kidney preservation. BioMed Res Int. 2018; 2018: 9206257.

[17]

von HornC, MinorT. Improved approach for normothermic machine perfusion of cold stored kidney grafts. Am J Transl Res. 2018; 10(6): 1921-1929.

[18]

BogenspergerC, Hofmann J, MessnerF, et al. Ex vivo mesenchymal stem cell therapy to regenerate machine perfused organs. Int J Mol Sci. 2021; 22(10): 5233.

[19]

Sierra-ParragaJM, Munk A, AndersenC, et al. Mesenchymal stromal cells are retained in the porcine renal cortex independently of their metabolic state after renal intra-arterial infusion. Stem Cells Dev. 2019; 28(18): 1224-1235.

[20]

PoolM, Eertman T, Sierra ParragaJ, et al. Infusing mesenchymal stromal cells into porcine kidneys during normothermic machine perfusion: intact MSCs can be traced and localised to glomeruli. Int J Mol Sci. 2019; 20(14): E3607.

[21]

BrasileL, HenryN, OrlandoG, Stubenitsky B. Potentiating renal regeneration using mesenchymal stem cells. Transplantation. 2019; 103(2): 307-313.

[22]

LohmannS, PoolMBF, RozenbergKM, et al. Mesenchymal stromal cell treatment of donor kidneys during ex vivo normothermic machine perfusion: a porcine renal autotransplantation study. Am J Transplant Off J Am Soc Transplant Am Soc Transpl Surg. 2021; 21(7): 2348-2359.

[23]

KimDK, KangB, KimOY, et al. EVpedia: an integrated database of high-throughput data for systemic analyses of extracellular vesicles. J Extracell Vesicles. 2013; 2(1): 20384.

[24]

KeshtkarS, Azarpira N, GhahremaniMH. Mesenchymal stem cell-derived extracellular vesicles: novel frontiers in regenerative medicine. Stem Cell Res Ther. 2018; 9(1): 63.

[25]

EirinA, LermanLO. Mesenchymal stem/stromal cell–derived extracellular vesicles for chronic kidney disease: are we there yet?. Hypertension. 2021; 78(2): 261-269.

[26]

JiangZZ, LiuYM, NiuX, et al. Exosomes secreted by human urine-derived stem cells could prevent kidney complications from type I diabetes in rats. Stem Cell Res Ther. 2016; 7(1): 24.

[27]

RatajczakMZ, Ratajczak J. Extracellular microvesicles/exosomes: discovery, disbelief, acceptance, and the future?. Leukemia. 2020; 34(12): 3126-3135.

[28]

GrangeC, Bellucci L, BussolatiB, RanghinoA. Potential applications of extracellular vesicles in solid organ transplantation. Cells. 2020; 9(2): E369.

[29]

LazanaI, Vassilopoulos G. A “waste product” to save the day in the field of transplantation: the evolving potential of extracellular vesicles. Immunology. 2022.

[30]

BharadwajS, LiuG, ShiY, et al. Multipotential differentiation of human urine-derived stem cells: potential for therapeutic applications in urology. Stem Cells Dayt Ohio. 2013; 31(9): 1840-1856.

[31]

SteichenC, Si-Tayeb K, WulkanF, et al. human induced pluripotent stem (hiPS) cells from urine samples: a non-integrative and feeder-free reprogramming strategy. Curr Protoc Hum Genet. 2017; 92: 21.7.1-21.7.22.

[32]

BurdeyronP, GiraudS, HauetT, Steichen C. Urine-derived stem/progenitor cells: a focus on their characterization and potential. World J Stem Cells. 2020; 12(10): 1080-1096.

[33]

SchossererM, Reynoso R, WallyV, et al. Urine is a novel source of autologous mesenchymal stem cells for patients with epidermolysis bullosa. BMC Res Notes. 2015; 8(1).

[34]

LiuG, WuR, YangB, et al. Human urine-derived stem cell differentiation to endothelial cells with barrier function and nitric oxide production. Stem Cells Transl Med. 2018; 7(9): 686-698.

[35]

LazzeriE, Ronconi E, AngelottiML, et al. human urine-derived renal progenitors for personalized modeling of genetic kidney disorders. J Am Soc Nephrol JASN. 2015; 26(8): 1961-1974.

[36]

ArcolinoFO, Hosgood S, AkalayS, et al. De novo SIX2 activation in human kidneys treated with neonatal kidney stem/progenitor cells. Am J Transplant Off J Am Soc Transplant Am Soc Transpl Surg. 2022; 22(12): 2791-2803.

[37]

LepoittevinM, Blancart-Remaury Q, KerforneT, PellerinL, HauetT, ThuillierR. Comparison between 5 extractions methods in either plasma or serum to determine the optimal extraction and matrix combination for human metabolomics. Cell Mol Biol Lett. 2023; 28(1): 43.

[38]

MaunsbachAB, Marples D, ChinE, et al. Aquaporin-1 water channel expression in human kidney. J Am Soc Nephrol JASN. 1997; 8(1): 1-14.

[39]

Ticozzi-ValerioD, Raimondo F, PittoM, et al. Differential expression of AQP1 in microdomain-enriched membranes of renal cell carcinoma. Proteomics Clin Appl. 2007; 1(6): 588-597.

[40]

JordanNP, TingleSJ, ShuttleworthVG, et al. MiR-126-3p is dynamically regulated in endothelial-to-mesenchymal transition during fibrosis. Int J Mol Sci. 2021; 22(16): 8629.

[41]

CurciC, Castellano G, StasiA, et al. Endothelial-to-mesenchymal transition and renal fibrosis in ischaemia/reperfusion injury are mediated by complement anaphylatoxins and Akt pathway. Nephrol Dial Transplant Off Publ Eur Dial Transpl Assoc—Eur Ren Assoc. 2014; 29(4): 799-808.

[42]

LuM, WangP, ZhouS, et al. Ecdysone elicits chronic renal impairment via mineralocorticoid-like pathogenic activities. Cell Physiol Biochem. 2018; 49(4): 1633-1645.

[43]

LuM, WangP, GeY, et al. Activation of mineralocorticoid receptor by ecdysone, an adaptogenic and anabolic ecdysteroid, promotes glomerular injury and proteinuria involving overactive GSK3β pathway signaling. Sci Rep. 2018; 8(1): 12225.

[44]

MoriT, OhsakiY, Oba-YabanaI, Ito S. Diuretic usage for protection against end-organ damage in liver cirrhosis and heart failure: diuretic usage in volume overload diseases. Hepatol Res. 2017; 47(1): 11-22.

[45]

AggarwalS, Randhawa PK, SinghN, JaggiAS. Role of ATP-sensitive potassium channels in remote ischemic preconditioning induced tissue protection. J Cardiovasc Pharmacol Ther. 2017; 22(5): 467-475.

[46]

SpeesJL, LeeRH, GregoryCA. Mechanisms of mesenchymal stem/stromal cell function. Stem Cell Res Ther. 2016; 7(1): 125.

[47]

Aghajani NargesiA, Lerman LO, EirinA. Mesenchymal stem cell-derived extracellular vesicles for kidney repair: current status and looming challenges. Stem Cell Res Ther. 2017; 8(1): 273.

[48]

AkyurekliC, LeY, RichardsonRB, FergussonD, TayJ, AllanDS. A systematic review of preclinical studies on the therapeutic potential of mesenchymal stromal cell-derived microvesicles. Stem Cell Rev Rep. 2015; 11(1): 150-160.

[49]

AlbertiG, RussoE, CorraoS, et al. Current perspectives on adult mesenchymal stromal cell-derived extracellular vesicles: biological features and clinical indications. Biomedicines. 2022; 10(11): 2822.

[50]

HiltbrunnerS, Larssen P, EldhM, et al. Exosomal cancer immunotherapy is independent of MHC molecules on exosomes. Oncotarget. 2016; 7(25): 38707-38717.

[51]

MunkA, DuvaldCS, PedersenM, et al. Dosing limitation for intra-renal arterial infusion of mesenchymal stromal cells. Int J Mol Sci. 2022; 23(15): 8268.

[52]

EirinA, ZhuXY, PuranikAS, et al. Mesenchymal stem cell-derived extracellular vesicles attenuate kidney inflammation. Kidney Int. 2017; 92(1): 114-124.

[53]

TimsitMO, García-Cardeña G. Flow-dependent endothelial function and kidney dysfunction. Semin Nephrol. 2012; 32(2): 185-191.

[54]

GiraudS, Favreau F, ChatauretN, ThuillierR, MaigaS, HauetT. Contribution of large pig for renal ischemia-reperfusion and transplantation studies: the preclinical model. J Biomed Biotechnol. 2011; 2011: 532127.

[55]

AnandRP, LayerJV, HejaD, et al. Design and testing of a humanized porcine donor for xenotransplantation. Nature. 2023; 622(7982): 393-401.

[56]

LoupyA, Goutaudier V, GiarraputoA, et al. Immune response after pig-to-human kidney xenotransplantation: a multimodal phenotyping study. Lancet Lond Engl. 2023; 402(10408): 1158-1169.

[57]

KozlovM. Monkey survives for two years after gene-edited pig-kidney transplant. Nature. 2023; 622(7983): 437-438.

[58]

KaminskiJ, Delpech PO, Kaaki-HosniS, PromeyratX, HauetT, HannaertP. Oxygen consumption by warm ischemia-injured porcine kidneys in hypothermic static and machine preservation. J Surg Res. 2019; 242: 78-86.

[59]

PoolMBF, VosJ, EijkenM, et al. Treating ischemically damaged porcine kidneys with human bone marrow-and adipose tissue-derived mesenchymal stromal cells during ex vivo normothermic machine perfusion. Stem Cells Dev. 2020; 29(20): 1320-1330.

[60]

HosgoodSA, BarlowAD, YatesPJ, Snoeijs MGJ, van HeurnELW, NicholsonML. A pilot study assessing the feasibility of a short period of normothermic preservation in an experimental model of non heart beating donor kidneys. J Surg Res. 2011; 171(1): 283-290.

[61]

FoguenneM, MacMillan S, KronP, et al. Current evidence and future perspectives to implement continuous and end-ischemic use of normothermic and oxygenated hypothermic machine perfusion in clinical practice. J Clin Med. 2023; 12(9): 3207.

[62]

RijkseE, BouariS, KimenaiHJAN, et al. Additional normothermic machine perfusion versus hypothermic machine perfusion in suboptimal donor kidney transplantation: protocol of a randomized, controlled, open-label trial. Int J Surg Protoc. 2021; 25(1): 227-237.

[63]

GiraudS, Kerforne T, ZelyJ, et al. The inhibition of eIF5A hypusination by GC7, a preconditioning protocol to prevent brain death-induced renal injuries in a preclinical porcine kidney transplantation model. Am J Transplant Off J Am Soc Transplant Am Soc Transpl Surg. 2020; 20(12): 3326-3340.

[64]

TilletS, GiraudS, KerforneT, et al. Inhibition of coagulation proteases Xa and IIa decreases ischemia–reperfusion injuries in a preclinical renal transplantation model. Transl Res. 2016; 178: 95-106.

[65]

JochmansI, LerutE, van PeltJ, Monbaliu D, PirenneJ. Circulating AST, H-FABP, and NGAL are early and accurate biomarkers of graft injury and dysfunction in a preclinical model of kidney transplantation. Ann Surg. 2011; 254(5): 784-792.

[66]

WuH, CraftML, WangP, et al. IL-18 contributes to renal damage after ischemia-reperfusion. J Am Soc Nephrol. 2008; 19(12): 2331-2341.

[67]

ShibaharaS. Regulation of heme oxygenase gene expression. Semin Hematol. 1988; 25(4): 370-376.

[68]

HaDH, keunKimH, LeeJ, et al. Mesenchymal stem/stromal cell-derived exosomes for immunomodulatory therapeutics and skin regeneration. Cells. 2020; 9(5): 1157.

[69]

ZhouD, FuH, LiuS, et al. Early activation of fibroblasts is required for kidney repair and regeneration after injury. FASEB J Off Publ Fed Am Soc Exp Biol. 2019; 33(11): 12576-12587.

[70]

VerstraetenL, Den Abt R, GhesquièreB, JochmansI. Current insights into the metabolome during hypothermic kidney perfusion-a scoping review. J Clin Med. 2023; 12(11): 3613.

[71]

MulveyJF, Shaheed SU, CharlesPD, et al. Perfusate proteomes provide biological insight into oxygenated versus standard hypothermic machine perfusion in kidney transplantation. Ann Surg. 2023; 278(5): 676-682.

RIGHTS & PERMISSIONS

2024 The Author(s). Clinical and Translational Medicine published by John Wiley & Sons Australia, Ltd on behalf of Shanghai Institute of Clinical Bioinformatics.

AI Summary AI Mindmap
PDF

245

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/