RECQL4 affects MHC class II-mediated signalling and favours an immune-evasive signature that limits response to immune checkpoint inhibitor therapy in patients with malignant melanoma

Sara Egea-Rodriguez , Renáta Váraljai , Thierry M. Nordmann , Restuan Lubis , Manuel Philip , Florian Rambow , Alexander Roesch , Michael Flaig , Susanne Horn , Raphael Stoll , Fang Zhao , Annette Paschen , Bert Klebl , Ian D. Hickson , Dirk Schadendorf , Matthias Mann , Iris Helfrich

Clinical and Translational Medicine ›› 2025, Vol. 15 ›› Issue (1) : e70094

PDF
Clinical and Translational Medicine ›› 2025, Vol. 15 ›› Issue (1) : e70094 DOI: 10.1002/ctm2.70094
RESEARCH ARTICLE

RECQL4 affects MHC class II-mediated signalling and favours an immune-evasive signature that limits response to immune checkpoint inhibitor therapy in patients with malignant melanoma

Author information +
History +
PDF

Abstract

•High RECQL4 expression limits survival and can act as an independent prognostic factor in melanoma patients.

•RECQL4 has the potential to act as a negative feedback mediator of immune checkpoint-targeted therapy by limiting signatures associated with therapeutic efficacy.

•RECQL4 favours an immune-evasive phenotype by downregulating major histocompatibility complex class II molecules.

Keywords

immune evasion / immunotherapy / melanoma / MHC class II / RECQL4

Cite this article

Download citation ▾
Sara Egea-Rodriguez, Renáta Váraljai, Thierry M. Nordmann, Restuan Lubis, Manuel Philip, Florian Rambow, Alexander Roesch, Michael Flaig, Susanne Horn, Raphael Stoll, Fang Zhao, Annette Paschen, Bert Klebl, Ian D. Hickson, Dirk Schadendorf, Matthias Mann, Iris Helfrich. RECQL4 affects MHC class II-mediated signalling and favours an immune-evasive signature that limits response to immune checkpoint inhibitor therapy in patients with malignant melanoma. Clinical and Translational Medicine, 2025, 15(1): e70094 DOI:10.1002/ctm2.70094

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Huang J-L, Chang Y-T, Hong Z-Y, Lin C-S. Targeting DNA damage response and immune checkpoint for anticancer therapy. Int J Mol Sci. 2022;23(6):3238.

[2]

Dummer R, Ascierto PA, Nathan P, Robert C, Schadendorf D. Rationale for immune checkpoint inhibitors plus targeted therapy in metastatic melanoma: a review. JAMA Oncol. 2020;6(12):1957-1966.

[3]

Robert C. A decade of immune-checkpoint inhibitors in cancer therapy. Nat Commun. 2020;11(1):3801.

[4]

Prasad V, Kaestner V, Mailankody S. Cancer drugs approved based on biomarkers and not tumor type-FDA approval of pembrolizumab for mismatch repair-deficient solid cancers. JAMA Oncol. 2018;4(2):157-158.

[5]

Aggarwal M, Brosh RM. Hitting the bull’s eye: novel directed cancer therapy through helicase-targeted synthetic lethality. J Cell Biochem. 2009;106(5):758-763.

[6]

Lord CJ, Ashworth A. PARP inhibitors: the first synthetic lethal targeted therapy. Science. 2017;355(6330):1152-1158.

[7]

Yap TA, Plummer R, Azad NS, Helleday T. The DNA damaging revolution: PARP inhibitors and beyond. Am Soc Clin Oncol Educ Book. 2019;39:185-195.

[8]

Brosh RM, Matson SW. History of DNA helicases. Genes. 2020;11(3):255.

[9]

Dhar S, Datta A, Brosh RM. DNA helicases and their roles in cancer. DNA Repair. 2020;96:102994.

[10]

Suhasini AN, Brosh RM. DNA helicases associated with genetic instability, cancer, and aging. Adv Exp Med Biol. 2013;767:123-144.

[11]

Mo D, Zhao Y, Balajee AS. Human RecQL4 helicase plays multifaceted roles in the genomic stability of normal and cancer cells. Cancer Lett. 2018;413:1-10.

[12]

Yong ZWE, Zaini ZM, Kallarakkal TG, et al. Genetic alterations of chromosome 8 genes in oral cancer. Sci Rep. 2014;4:6073.

[13]

Fang H, Nie L, Chi Z, et al. RecQL4 helicase amplification is involved in human breast tumorigenesis. PLoS One. 2013;8(7):e69600.

[14]

Su Y, Meador JA, Calaf GM, et al. Human RecQL4 helicase plays critical roles in prostate carcinogenesis. Cancer Res. 2010;70(22):9207-9217.

[15]

Arora A, Agarwal D, Abdel-Fatah TMA, et al. RECQL4 helicase has oncogenic potential in sporadic breast cancers. J Pathol. 2016;238(4):495-501.

[16]

Guo L, Li Y, Zhao C, et al. RECQL4, negatively regulated by miR-10a-5p, facilitates cell proliferation and invasion via MAFB in ovarian cancer. Front Oncol. 2020;10:1896.

[17]

Chen H, Yuan K, Wang X, et al. Overexpression of RECQL4 is associated with poor prognosis in patients with gastric cancer. Oncol Lett. 2018;16(4):5419-5425.

[18]

Mo D, Fang H, Niu K, et al. Human helicase RECQL4 drives cisplatin resistance in gastric cancer by activating an AKT-YB1-MDR1 signaling pathway. Cancer Res. 2016;76(10):3057-3066.

[19]

Lyu G, Su P, Hao X, et al. RECQL4 regulates DNA damage response and redox homeostasis in esophageal cancer. Cancer Biol Med. 2021;18(1):120-138.

[20]

Zhou F, Wang L, Jin K, Wu Y. RecQ-like helicase 4 (RECQL4) exacerbates resistance to oxaliplatin in colon adenocarcinoma via activation of the PI3K/AKT signaling pathway. Bioengineered. 2021;12(1):5859-5869.

[21]

Li J, Jin J, Liao M, et al. Upregulation of RECQL4 expression predicts poor prognosis in hepatocellular carcinoma. Oncol Lett. 2018;15(4):4248-4254.

[22]

Król SK, Kaczmarczyk A, Wojnicki K, et al. Aberrantly expressed RECQL4 helicase supports proliferation and drug resistance of human glioma cells and glioma stem cells. Cancers (Basel). 2020;12(10):E2919.

[23]

Heidari S, Babor TF, De Castro P, Tort S, Curno M. Sex and gender equity in research: rationale for the SAGER guidelines and recommended use. Res Integrity Peer Rev. 2016;1(1):2.

[24]

Nguyen B, Fong C, Luthra A, et al. Genomic characterization of metastatic patterns from prospective clinical sequencing of 25, 000 patients. Cell. 2022;185(3):563-575.e11.

[25]

Gao J, Aksoy BA, Dogrusoz U, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. 2013;6(269):pl1.

[26]

Cerami E, Gao J, Dogrusoz U, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012;2(5):401-404.

[27]

Liu D, Schilling B, Liu D, et al. Integrative molecular and clinical modeling of clinical outcomes to PD1 blockade in patients with metastatic melanoma. Nat Med. 2019;25(12):1916-1927.

[28]

Hugo W, Zaretsky JM, Sun L, et al. Genomic and transcriptomic features of response to anti-PD-1 therapy in metastatic melanoma. Cell. 2016;165(1):35-44.

[29]

Gide TN, Quek C, Menzies AM, et al. Distinct immune cell populations define response to anti-PD-1 monotherapy and anti-PD-1/anti-CTLA-4 combined therapy. Cancer Cell. 2019;35(2):238-255.e6.

[30]

Riaz N, Havel JJ, Makarov V, et al. Tumor and microenvironment evolution during immunotherapy with nivolumab. Cell. 2017;171(4):934-949.e16.

[31]

Philip M, Puppel SH, Stiller M, et al. Database for queries of melanoma cohorts with molecular and clinical data. Pigment Cell Melanoma Res. 2023;36(2):252-258.

[32]

Mermel CH, Schumacher SE, Hill B, Meyerson ML, Beroukhim R, Getz G. GISTIC2.0 facilitates sensitive and confident localization of the targets of focal somatic copy-number alteration in human cancers. Genome Biol. 2011;12(4):R41.

[33]

Eisenhauer E, Therasse P, Bogaerts J, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer (Oxford, England :1990). 2009;45(2):228-247.

[34]

Cheng DT, Mitchell TN, Zehir A, et al. Memorial Sloan Kettering-Integrated Mutation Profiling of Actionable Cancer Targets (MSK-IMPACT). J Mol Diagnos. 2015;17(3):251-264.

[35]

Niu B, Ye K, Zhang Q, et al. MSIsensor: microsatellite instability detection using paired tumor-normal sequence data. Bioinformatics (Oxford, England). 2014;30(7):1015-1016.

[36]

Liberzon A, Birger C, Thorvaldsdóttir H, Ghandi M, Mesirov JP, Tamayo P. The Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell Syst. 2015;1(6):417-425.

[37]

Ge SX, Jung D, Yao R. ShinyGO: a graphical gene-set enrichment tool for animals and plants. Bioinformatics. 2020;36(8):2628-2629.

[38]

Li T, Fu J, Zeng Z, et al. TIMER2.0 for analysis of tumor-infiltrating immune cells. Nucleic Acids Res. 2020;48(W1):W509-W514.

[39]

Aran D, Hu Z, Butte AJ. xCell: digitally portraying the tissue cellular heterogeneity landscape. Genome Biol. 2017;18(1):220.

[40]

Campbell K, Amouzgar M, Pfeiffer S, et al. Prior anti-CTLA-4 therapy impacts molecular characteristics associated with anti-PD-1 response in advanced melanoma. Cancer Cell. 2023;41(4):791-806.

[41]

Tang Z, Li C, Kang B, Gao G, Li C, Zhang Z. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res. 2022;45(W1):W98-W102.

[42]

Demichev V, Messner CB, Vernardis SI, Lilley KS, Ralser M. DIA-NN: neural networks and interference correction enable deep proteome coverage in high throughput. Nat Methods. 2019;17(1):41-44.

[43]

Lukow D, Sausville E, Suri P, et al. Chromosomal instability accelerates the evolution of resistance to anti-cancer therapies. Develop Cell. 2021;56(17):2427-2439.

[44]

Vishwakarma R, McManus KJ. Chromosome instability; implications in cancer development, progression, and clinical outcomes. Cancers (Basel). 2020;12(4):824.

[45]

Motta R, Cabezas-Camarero S, Torres-Mattos C, et al. Immunotherapy in microsatellite instability metastatic colorectal cancer: current status and future perspectives. J Clin Transl Res. 2021;7(4):511-522.

[46]

Kang K, Xie F, Mao J, Bai Y, Wang X. Significance of tumor mutation burden in immune infiltration and prognosis in cutaneous melanoma. Front Oncol. 2020;10:573141.

[47]

Chi Z, Nie L, Peng Z, et al. RecQL4 cytoplasmic localization: implications in mitochondrial DNA oxidative damage repair. Int J Biochem Cell Biol. 2012;44(11):1942-1951.

[48]

Croteau DL, Rossi ML, Canugovi C, et al. RECQL4 localizes to mitochondria and preserves mitochondrial DNA integrity. Aging Cell. 2012;11(3):456-466.

[49]

Menon S, Guruvayoorappan C, Sakthivel K, Rasmi R. Ki-67 protein as a tumour proliferation marker. Clin Chim Acta. 2019;491:39-45.

[50]

Dhanasekaran R, Deutzmann A, Mahauad-Fernandez WD, Hansen AS, Gouw AM, Felsher DW. The MYC oncogene-the grand orchestrator of cancer growth and immune evasion. Nat Rev Clin Oncol. 2022;19(1):23-36.

[51]

Kaiser S, Sauer F, Kisker C. The structural and functional characterization of human RecQ4 reveals insights into its helicase mechanism. Nat Commun. 2017;8:15907.

[52]

Rossi M, Ghosh A, Kulikowicz T, Croteau D, Bohr V. Conserved helicase domain of human RecQ4 is required for strand annealing-independent DNA unwinding. DNA Repair. 2010;9(7):796-804.

[53]

Johnson DB, Estrada MV, Salgado R, et al. Melanoma-specific MHC-II expression represents a tumour-autonomous phenotype and predicts response to anti-PD-1/PD-L1 therapy. Nat Commun. 2016;7(1):1-10.

[54]

Bailly C, Thuru X, Goossens L, Goossens J. Soluble TIM-3 as a biomarker of progression and therapeutic response in cancers and other of human diseases. Biochem Pharmacol. 2023;209:115445.

[55]

Chang C, Hu M, Hsiao Y, Wang Y. ST2 signaling in the tumor microenvironment. Adv Exp Med Biol. 2020;1240:83-93.

[56]

Mizukami Y, Kono K, Kawaguchi Y, et al. CCL17 and CCL22 chemokines within tumor microenvironment are related to accumulation of Foxp3+ regulatory T cells in gastric cancer. Int J Cancer. 2008;122(10):2286-2293.

[57]

Zboralski D, Hoehlig K, Eulberg D, Frömming A, Vater A. Increasing tumor-infiltrating T cells through inhibition of CXCL12 with NOX-A12 synergizes with PD-1 blockade. Cancer Immunol Res. 2017;5(11):950-956.

[58]

Xu D, Zhu Z, Wakefield M, Xiao H, Bai Q, Fang Y. The role of IL-11 in immunity and cancer. Cancer Lett. 2016;373(2):156-163.

[59]

Gruber T, Kremenovic M, Sadozai H, et al. IL-32γ potentiates tumor immunity in melanoma. JCI Insight. 2020;5(18):e138772.

[60]

He H, Shi L, Meng D, et al. PD-1 blockade combined with IL-33 enhances the antitumor immune response in a type-1 lymphocyte-mediated manner. Cancer Treat Res Commun. 2021;28:100379.

[61]

Liu W, Stachura P, Xu H, et al. BAFF attenuates immunosuppressive monocytes in the melanoma tumor microenvironment. Cancer Res. 2022;82(2):264-277.

[62]

Han Y, Guo Z, Jiang L, et al. CXCL10 and CCL5 as feasible biomarkers for immunotherapy of homologous recombination deficient ovarian cancer. Am J Cancer Res. 2023;13(5):1904-1922.

[63]

Bawden E, Wagner T, Schröder J, et al. CD4+ T cell immunity against cutaneous melanoma encompasses multifaceted MHC II-dependent responses. Sci Immunol. 2024;9(91):eadi9517.

[64]

Stupia S, Heeke C, Brüggemann A, et al. HLA class II loss and JAK1/2 deficiency coevolve in melanoma leading to CD4 T-cell and IFNγ cross-resistance. Clin Cancer Res. 2023;29(15):2894-2907.

[65]

Jiang M, Jia K, Wang L, et al. Alterations of DNA damage response pathway: biomarker and therapeutic strategy for cancer immunotherapy. Acta Pharmaceut Sin B. 2021;11(10):2983-2994.

[66]

Grasso CS, Tsoi J, Onyshchenko M, et al. Conserved interferon-γ signaling drives clinical response to immune checkpoint blockade therapy in melanoma. Cancer Cell. 2020;38(4):500-515. e3.

[67]

Sucker A, Zhao F, Pieper N, et al. Acquired IFNγ resistance impairs anti-tumor immunity and gives rise to T-cell-resistant melanoma lesions. Nat Commun. 2017;8(1):15440.

[68]

Smeets MF, Deluca E, Wall M, et al. The Rothmund-Thomson syndrome helicase RECQL4 is essential for hematopoiesis. J Clin Invest. 2014;124(8):3551-3565.

[69]

Sugiyama T, Chino M, Tsurimoto T, Nozaki N, Ishimi Y. Interaction of heliquinomycin with single-stranded DNA inhibits MCM4/6/7 helicase. J Biochem. 2011;151(2):129-137.

RIGHTS & PERMISSIONS

2025 The Author(s). Clinical and Translational Medicine published by John Wiley & Sons Australia, Ltd on behalf of Shanghai Institute of Clinical Bioinformatics.

AI Summary AI Mindmap
PDF

177

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/