Single-cell dissection reveals immunosuppressive F13A1+ macrophage as a hallmark for multiple primary lung cancers

Chenglin Yang , Jiahao Qu , Jingting Wu , Songhua Cai , Wenyi Liu , Youjun Deng , Yiran Meng , Liuqing Zheng , Lishen Zhang , Li Wang , Xiaotong Guo

Clinical and Translational Medicine ›› 2024, Vol. 14 ›› Issue (12) : e70091

PDF
Clinical and Translational Medicine ›› 2024, Vol. 14 ›› Issue (12) : e70091 DOI: 10.1002/ctm2.70091
RESEARCH ARTICLE

Single-cell dissection reveals immunosuppressive F13A1+ macrophage as a hallmark for multiple primary lung cancers

Author information +
History +
PDF

Abstract

•Comparative scRNA-seq analysis reveals significant similarities in genetic, transcriptomicand immune profiles between MPLCs and SPLCs.

•Identification of a unique immunosuppressive F13A1+ macrophage subtype, preferentially enriched in MPLCs, linked to immune evasion and tumourprogression.

•SPP1-CD44/CCL13-ACKR1 interactions are crucial in MPLC tumour microenvironment, indicating potential targets for therapeutic intervention.

Keywords

F13A1+ MΦ / MPLC / scRNA-seq / SPLC

Cite this article

Download citation ▾
Chenglin Yang, Jiahao Qu, Jingting Wu, Songhua Cai, Wenyi Liu, Youjun Deng, Yiran Meng, Liuqing Zheng, Lishen Zhang, Li Wang, Xiaotong Guo. Single-cell dissection reveals immunosuppressive F13A1+ macrophage as a hallmark for multiple primary lung cancers. Clinical and Translational Medicine, 2024, 14(12): e70091 DOI:10.1002/ctm2.70091

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

IrimieA, Achimas-Cadariu P, BurzC, PuscasE. Multiple primary malignancies—epidemiological analysis at a single tertiary institution. J Gastrointestin Liver Dis. 2010; 19(1): 69-73.

[2]

SiegelRL, MillerKD, FuchsHE, Jemal A. Cancer statistics, 2021. CA Cancer J Clin. 2021; 71(1): 7-33.

[3]

LvJ, ZhuD, WangX, Shen Q, RaoQ, ZhouX. The value of prognostic factors for survival in synchronous multifocal lung cancer: a retrospective analysis of 164 patients. Ann Thorac Surg. 2018; 105(3): 930-936.

[4]

XiaoF, LiuD, GuoY, et al. Survival rate and prognostic factors of surgically resected clinically synchronous multiple primary non-small cell lung cancer and further differentiation from intrapulmonary metastasis. J Thorac Dis. 2017; 9(4): 990-1001.

[5]

MurphySJ, AubryMC, HarrisFR, et al. Identification of independent primary tumors and intrapulmonary metastases using DNA rearrangements in non-small-cell lung cancer. J Clin Oncol. 2014; 32(36): 4050-4058.

[6]

LouF, HuangJ, SimaCS, Dycoco J, RuschV, BachPB. Patterns of recurrence and second primary lung cancer in early-stage lung cancer survivors followed with routine computed tomography surveillance. J Thorac Cardiovasc Surg. 2013; 145(1): 75-81. discussion -2.

[7]

BattafaranoRJ, MeyersBF, GuthrieTJ, Cooper JD, PattersonGA. Surgical resection of multifocal non-small cell lung cancer is associated with prolonged survival. Ann Thorac Surg. 2002; 74(4): 988-993. discussion 93–4.

[8]

MascalchiM, CominCE, BertelliE, et al. Screen-detected multiple primary lung cancers in the ITALUNG trial. J Thorac Dis. 2018; 10(2): 1058-1066.

[9]

BoyleJM, Tandberg DJ, ChinoJP, D’AmicoTA, ReadyNE, KelseyCR. Smoking history predicts for increased risk of second primary lung cancer: a comprehensive analysis. Cancer. 2015; 121(4): 598-604.

[10]

VogtA, SchmidS, HeinimannK, et al. Multiple primary tumours: challenges and approaches, a review. ESMO Open. 2017; 2(2): e000172.

[11]

CoyteA, Morrison DS, McLooneP. Second primary cancer risk—the impact of applying different definitions of multiple primaries: results from a retrospective population-based cancer registry study. BMC Cancer. 2014; 14: 272.

[12]

WrightGM, Goodwin D. Response to letter: beyond “personalized” to “tumoralized” therapy. J Thorac Oncol. 2022; 17(6): e54.

[13]

SuhYJ, LeeHJ, SungP, et al. A novel algorithm to differentiate between multiple primary lung cancers and intrapulmonary metastasis in multiple lung cancers with multiple pulmonary sites of involvement. J Thorac Oncol. 2020; 15(2): 203-215.

[14]

GoodwinD, RathiV, ConronM, Wright GM. Genomic and clinical significance of multiple primary lung cancers as determined by next-generation sequencing. J Thorac Oncol. 2021; 16(7): 1166-1175.

[15]

WangY, WangG, ZhengH, et al. Distinct gene mutation profiles among multiple and single primary lung adenocarcinoma. Front Oncol. 2022; 12: 1014997.

[16]

DevarakondaS, LiY, Martins RodriguesF, et al. Genomic profiling of lung adenocarcinoma in never-smokers. J Clin Oncol. 2021; 39(33): 3747-3758.

[17]

LiangN, BingZ, WangY, et al. Clinical implications of EGFR-associated MAPK/ERK pathway in multiple primary lung cancer. Clin Transl Med. 2022; 12(5): e847.

[18]

GuoW, ZhouB, BieF, et al. Single-cell RNA sequencing analysis reveals transcriptional heterogeneity of multiple primary lung cancer. Clin Transl Med. 2023; 13(10): e1453.

[19]

HeY, LiuX, WangH, et al. Mechanisms of progression and heterogeneity in multiple nodules of lung adenocarcinoma. Small Methods. 2021; 5(6): e2100082.

[20]

YuF, HuangX, ZhouD, et al. Genetic, DNA methylation, and immune profile discrepancies between early-stage single primary lung cancer and synchronous multiple primary lung cancer. Clin Epigenetics. 2023; 15(1): 4.

[21]

DobinA, DavisCA, SchlesingerF, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013; 29(1): 15-21.

[22]

LiaoY, SmythGK, ShiW. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014; 30(7): 923-930.

[23]

StuartT, ButlerA, HoffmanP, et al. Comprehensive integration of single-cell data. Cell. 2019; 177(7): 1888-1902.

[24]

KorsunskyI, Millard N, FanJ, et al. Fast, sensitive and accurate integration of single-cell data with harmony. Nat Methods. 2019; 16(12): 1289-1296.

[25]

SubramanianA, TamayoP, MoothaVK, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005; 102(43): 15545-15550.

[26]

ChenEY, TanCM, KouY, et al. Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinformatics. 2013; 14: 128.

[27]

ZhengL, QinS, SiW, et al. Pan-cancer single-cell landscape of tumor-infiltrating T cells. Science. 2021; 374(6574): abe6474.

[28]

KurtenbachS, CruzAM, RodriguezDA, Durante MA, HarbourJW. Uphyloplot2: visualizing phylogenetic trees from single-cell RNA-seq data. BMC Genomics. 2021; 22(1): 419.

[29]

JinS, Guerrero-Juarez CF, ZhangL, et al. Inference and analysis of cell-cell communication using CellChat. Nat Commun. 2021; 12(1): 1088.

[30]

TrapnellC, Cacchiarelli D, GrimsbyJ, et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat Biotechnol. 2014; 32(4): 381-386.

[31]

QiuX, HillA, PackerJ, Lin D, MaYA, TrapnellC. Single-cell mRNA quantification and differential analysis with census. Nat Methods. 2017; 14(3): 309-315.

[32]

QiuX, MaoQ, TangY, et al. Reversed graph embedding resolves complex single-cell trajectories. Nat Methods. 2017; 14(10): 979-982.

[33]

StreetK, RissoD, FletcherRB, et al. Slingshot: cell lineage and pseudotime inference for single-cell transcriptomics. BMC Genomics. 2018; 19(1): 477.

[34]

OkayamaH, KohnoT, IshiiY, et al. Identification of genes upregulated in ALK-positive and EGFR/KRAS/ALK-negative lung adenocarcinomas. Cancer Res. 2012; 72(1): 100-111.

[35]

YamauchiM, Yamaguchi R, NakataA, et al. Epidermal growth factor receptor tyrosine kinase defines critical prognostic genes of stage I lung adenocarcinoma. PLoS ONE. 2012; 7(9): e43923.

[36]

NewmanAM, SteenCB, LiuCL, et al. Determining cell type abundance and expression from bulk tissues with digital cytometry. Nat Biotechnol. 2019; 37(7): 773-782.

[37]

TangQ, ZhaoH, YangB, et al. WIF-1 gene inhibition and Wnt signal transduction pathway activation in NSCLC tumorigenesis. Oncol Lett. 2017; 13(3): 1183-1188.

[38]

BerndtA, CarioCL, SilvaKA, et al. Identification of fat4 and tsc22d1 as novel candidate genes for spontaneous pulmonary adenomas. Cancer Res. 2011; 71(17): 5779-5791.

[39]

ZuoB, WangL, LiX, et al. Abnormal low expression of SFTPC promotes the proliferation of lung adenocarcinoma by enhancing PI3K/AKT/mTOR signaling transduction. Aging (Albany NY). 2023; 15(21): 12451-12475.

[40]

MitsuhashiA, GotoH, KuramotoT, et al. Surfactant protein A suppresses lung cancer progression by regulating the polarization of tumor-associated macrophages. Am J Pathol. 2013; 182(5): 1843-1853.

[41]

ScrimaM, De Marco C, De VitaF, et al. The nonreceptor-type tyrosine phosphatase PTPN13 is a tumor suppressor gene in non-small cell lung cancer. Am J Pathol. 2012; 180(3): 1202-1214.

[42]

SpinolaM, Falvella FS, ColomboF, et al. MFSD2A is a novel lung tumor suppressor gene modulating cell cycle and matrix attachment. Mol Cancer. 2010; 9: 62.

[43]

ZhaoJG, WangJF, FengJF, Jin XY, YeWL. HHIP overexpression inhibits the proliferation, migration and invasion of non-small cell lung cancer. PLoS ONE. 2019; 14(11): e0225755.

[44]

LittleAC, ShamD, HristovaM, et al. DUOX1 silencing in lung cancer promotes EMT, cancer stem cell characteristics and invasive properties. Oncogenesis. 2016; 5(10): e261.

[45]

SongM, GaoL, ZangJ, Xing X. ABCA3, a tumor suppressor gene, inhibits the proliferation, migration and invasion of lung adenocarcinoma by regulating the epithelial mesenchymal transition process. Oncol Lett. 2023; 26(4): 420.

[46]

GaoB, SekidoY, MaximovA, et al. Functional properties of a new voltage-dependent calcium channel alpha(2)delta auxiliary subunit gene (CACNA2D2). J Biol Chem. 2000; 275(16): 12237-12242.

[47]

DengM, PengL, LiJ, LiuX, XiaX, LiG. PPP1R14B is a prognostic and immunological biomarker in pan-cancer. Front Genet. 2021; 12: 763561.

[48]

OhET, KimHG, KimCH, et al. NQO1 regulates cell cycle progression at the G2/M phase. Theranostics. 2023; 13(3): 873-895.

[49]

LiuG, LiF, ChenM, Luo Y, DaiY, HouP. SNRPD1/E/F/G serve as potential prognostic biomarkers in lung adenocarcinoma. Front Genet. 2022; 13: 813285.

[50]

WenY, OuyangD, ZouQ, et al. A literature review of the promising future of TROP2: a potential drug therapy target. Ann Transl Med. 2022; 10(24): 1403.

[51]

LiuX, ChenL, ZhangT. Increased GOLM1 expression independently predicts unfavorable overall survival and recurrence-free survival in lung adenocarcinoma. Cancer Control. 2018; 25(1): 1073274818778001.

[52]

OliveiraG, Stromhaug K, KlaegerS, et al. Phenotype, specificity and avidity of antitumour CD8(+) T cells in melanoma. Nature. 2021; 596(7870): 119-125.

[53]

LiH, van der Leun AM, YofeI, et al. Dysfunctional CD8 T cells form a proliferative, dynamically regulated compartment within human melanoma. Cell. 2019; 176(4): 775-789. e18.

[54]

LoweryFJ, Krishna S, YossefR, et al. Molecular signatures of antitumor neoantigen-reactive T cells from metastatic human cancers. Science. 2022; 375(6583): 877-884.

[55]

LiJ, CaoD, JiangL, et al. ITGB2-ICAM1 axis promotes liver metastasis in BAP1-mutated uveal melanoma with retained hypoxia and ECM signatures. Cell Oncol (Dordr). 2024; 47(3): 951-965.

[56]

FigenschauSL, Knutsen E, UrbarovaI, et al. ICAM1 expression is induced by proinflammatory cytokines and associated with TLS formation in aggressive breast cancer subtypes. Sci Rep. 2018; 8(1): 11720.

[57]

CasadoJG, Pawelec G, MorgadoS, et al. Expression of adhesion molecules and ligands for activating and costimulatory receptors involved in cell-mediated cytotoxicity in a large panel of human melanoma cell lines. Cancer Immunol Immunother. 2009; 58(9): 1517-1526.

[58]

MiaoX, YangZL, XiongL, et al. Nectin-2 and DDX3 are biomarkers for metastasis and poor prognosis of squamous cell/adenosquamous carcinomas and adenocarcinoma of gallbladder. Int J Clin Exp Pathol. 2013; 6(2): 179-190.

[59]

LozanoE, MenaMP, DiazT, et al. Nectin-2 expression on malignant plasma cells is associated with better response to TIGIT blockade in multiple myeloma. Clin Cancer Res. 2020; 26(17): 4688-4698.

[60]

GeZ, ZhouG, Campos CarrascosaL, et al. TIGIT and PD1 co-blockade restores ex vivo functions of human tumor-infiltrating CD8(+) T cells in hepatocellular carcinoma. Cell Mol Gastroenterol Hepatol. 2021; 12(2): 443-464.

[61]

JollerN, LozanoE, BurkettPR, et al. Treg cells expressing the coinhibitory molecule TIGIT selectively inhibit proinflammatory Th1 and Th17 cell responses. Immunity. 2014; 40(4): 569-581.

[62]

FuhrmanCA, YehWI, SeayHR, et al. Divergent phenotypes of human regulatory T cells expressing the receptors TIGIT and CD226. J Immunol. 2015; 195(1): 145-155.

[63]

FourcadeJ, SunZ, ChauvinJM, et al. CD226 opposes TIGIT to disrupt Tregs in melanoma. JCI Insight. 2018; 3(14): e121157.

[64]

ActonSE, Astarita JL, MalhotraD, et al. Podoplanin-rich stromal networks induce dendritic cell motility via activation of the C-type lectin receptor CLEC-2. Immunity. 2012; 37(2): 276-289.

[65]

AstaritaJL, Cremasco V, FuJ, et al. The CLEC-2-podoplanin axis controls the contractility of fibroblastic reticular cells and lymph node microarchitecture. Nat Immunol. 2015; 16(1): 75-84.

[66]

OsadaM, InoueO, DingG, et al. Platelet activation receptor CLEC-2 regulates blood/lymphatic vessel separation by inhibiting proliferation, migration, and tube formation of lymphatic endothelial cells. J Biol Chem. 2012; 287(26): 22241-22252.

[67]

LiaoK, ZhangX, LiuJ, et al. The role of platelets in the regulation of tumor growth and metastasis: the mechanisms and targeted therapy. MedComm (2020). 2023; 4(5): e350.

[68]

DöringY, van der Vorst EPC, YanY, et al. Identification of a non-canonical chemokine-receptor pathway suppressing regulatory T cells to drive atherosclerosis. Nat Cardiovasc Res. 2024; 3(2): 221-242.

[69]

WeberC, MeilerS, DoringY, et al. CCL17-expressing dendritic cells drive atherosclerosis by restraining regulatory T cell homeostasis in mice. J Clin Invest. 2011; 121(7): 2898-2910.

[70]

BalkwillF. Cancer and the chemokine network. Nat Rev Cancer. 2004; 4(7): 540-550.

[71]

MiyakeM, LawtonA, GoodisonS, Urquidi V, RosserCJ. Chemokine (C-X-C motif) ligand 1 (CXCL1) protein expression is increased in high-grade prostate cancer. Pathol Res Pract. 2014; 210(2): 74-78.

[72]

MiyakeM, LawtonA, GoodisonS, et al. Chemokine (C-X-C) ligand 1 (CXCL1) protein expression is increased in aggressive bladder cancers. BMC Cancer. 2013; 13: 322.

[73]

MullerA, HomeyB, SotoH, et al. Involvement of chemokine receptors in breast cancer metastasis. Nature. 2001; 410(6824): 50-56.

[74]

CollinM, BigleyV. Human dendritic cell subsets: an update. Immunology. 2018; 154(1): 3-20.

[75]

LancaT, Ungerback J, Da SilvaC, et al. IRF8 deficiency induces the transcriptional, functional, and epigenetic reprogramming of cDC1 into the cDC2 lineage. Immunity. 2022; 55(8): 1431-1447. e11.

[76]

DwyerM, ShanQ, D’OrtonaS, et al. Cystic fibrosis sputum DNA has NETosis characteristics and neutrophil extracellular trap release is regulated by macrophage migration-inhibitory factor. J Innate Immun. 2014; 6(6): 765-779.

[77]

TotaniL, AmoreC, PiccoliA, et al. Type-4 phosphodiesterase (PDE4) blockade reduces NETosis in cystic fibrosis. Front Pharmacol. 2021; 12: 702677.

[78]

OdqvistL, Jevnikar Z, RiiseR, et al. Genetic variations in A20 DUB domain provide a genetic link to citrullination and neutrophil extracellular traps in systemic lupus erythematosus. Ann Rheum Dis. 2019; 78(10): 1363-1370.

[79]

Ortiz-EspinosaS, Morales X, SenentY, et al. Complement C5a induces the formation of neutrophil extracellular traps by myeloid-derived suppressor cells to promote metastasis. Cancer Lett. 2022; 529: 70-84.

[80]

TeijeiraA, GarasaS, GatoM, et al. CXCR1 and CXCR2 chemokine receptor agonists produced by tumors induce neutrophil extracellular traps that interfere with immune cytotoxicity. Immunity. 2020; 52(5): 856-871. e8.

[81]

LiX, GaoQ, WuW, et al. FGL2-MCOLN3-autophagy axis-triggered neutrophil extracellular traps exacerbate liver injury in fulminant viral hepatitis. Cell Mol Gastroenterol Hepatol. 2022; 14(5): 1077-1101.

[82]

BillR, Wirapati P, MessemakerM, et al. CXCL9:sPP1 macrophage polarity identifies a network of cellular programs that control human cancers. Science. 2023; 381(6657): 515-524.

[83]

LiuX, SongJ, ZhangH, et al. Immune checkpoint HLA-E:cD94-NKG2A mediates evasion of circulating tumor cells from NK cell surveillance. Cancer Cell. 2023; 41(2): 272-287.

[84]

BorstL, Sluijter M, SturmG, et al. NKG2A is a late immune checkpoint on CD8 T cells and marks repeated stimulation and cell division. Int J Cancer. 2022; 150(4): 688-704.

[85]

DucoinK, OgerR, Bilonda MutalaL, et al. Targeting NKG2A to boost anti-tumor CD8 T-cell responses in human colorectal cancer. Oncoimmunology. 2022; 11(1): 2046931.

[86]

LiuZ, RuiT, LinZ, et al. Tumor-associated macrophages promote metastasis of oral squamous cell carcinoma via CCL13 regulated by stress granule. Cancers (Basel). 2022; 14(20): 5081.

[87]

LiL, DaiF, WangL, et al. CCL13 and human diseases. Front Immunol. 2023; 14: 1176639.

[88]

MantovaniA, SicaA, SozzaniS, Allavena P, VecchiA, LocatiM. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 2004; 25(12): 677-686.

[89]

ZhuF, LiX, ChenS, Zeng Q, ZhaoY, LuoF. Tumor-associated macrophage or chemokine ligand CCL17 positively regulates the tumorigenesis of hepatocellular carcinoma. Med Oncol. 2016; 33(2): 17.

[90]

MempelTR, LillJK, AltenburgerLM. How chemokines organize the tumour microenvironment. Nat Rev Cancer. 2024; 24(1): 28-50.

[91]

MartinezFO, SicaA, MantovaniA, Locati M. Macrophage activation and polarization. Front Biosci. 2008; 13: 453-461.

[92]

FarmakiE, KazaV, ChatzistamouI, KiarisH. CCL8 promotes postpartum breast cancer by recruiting M2 macrophages. iScience. 2020; 23(6): 101217.

[93]

ZhangX, ChenL, DangWQ, et al. CCL8 secreted by tumor-associated macrophages promotes invasion and stemness of glioblastoma cells via ERK1/2 signaling. Lab Invest. 2020; 100(4): 619-629.

[94]

FuLQ, DuWL, CaiMH, Yao JY, ZhaoYY, MouXZ. The roles of tumor-associated macrophages in tumor angiogenesis and metastasis. Cell Immunol. 2020; 353: 104119.

[95]

Sierra-FilardiE, Puig-Kroger A, BlancoFJ, et al. Activin A skews macrophage polarization by promoting a proinflammatory phenotype and inhibiting the acquisition of anti-inflammatory macrophage markers. Blood. 2011; 117(19): 5092-5101.

[96]

Gutierrez-GonzalezA, Martinez-Moreno M, SamaniegoR, et al. Evaluation of the potential therapeutic benefits of macrophage reprogramming in multiple myeloma. Blood. 2016; 128(18): 2241-2252.

[97]

CannarileMA, Weisser M, JacobW, JeggAM, RiesCH, RuttingerD. Colony-stimulating factor 1 receptor (CSF1R) inhibitors in cancer therapy. J Immunother Cancer. 2017; 5(1): 53.

[98]

LuS, LiN, PengZ, et al. Fc fragment of immunoglobulin G receptor IIa (FCGR2A) as a new potential prognostic biomarker of esophageal squamous cell carcinoma. Chin Med J (Engl). 2021; 135(4): 482-484.

[99]

WangY, ChenD, LiuY, et al. Multidirectional characterization of cellular composition and spatial architecture in human multiple primary lung cancers. Cell Death Dis. 2023; 14(7): 462.

[100]

LambrechtsD, Wauters E, BoeckxB, et al. Phenotype molding of stromal cells in the lung tumor microenvironment. Nat Med. 2018; 24(8): 1277-1289.

[101]

AsmarR, SonettJR, SinghG, Mansukhani MM, BorczukAC. Use of oncogenic driver mutations in staging of multiple primary lung carcinomas: a single-center experience. J Thorac Oncol. 2017; 12(10): 1524-1535.

[102]

WuYL, TsuboiM, HeJ, et al. Osimertinib in resected EGFR-mutated non-small-cell lung cancer. N Engl J Med. 2020; 383(18): 1711-1123.

[103]

ZhouC, WuYL, ChenG, et al. Erlotinib versus chemotherapy as first-line treatment for patients with advanced EGFR mutation-positive non-small-cell lung cancer (OPTIMAL, CTONG-0802): a multicentre, open-label, randomised, phase 3 study. Lancet Oncol. 2011; 12(8): 735-742.

[104]

WuYL, ZhouC, HuCP, et al. Afatinib versus cisplatin plus gemcitabine for first-line treatment of Asian patients with advanced non-small-cell lung cancer harbouring EGFR mutations (LUX-Lung 6): an open-label, randomised phase 3 trial. Lancet Oncol. 2014; 15(2): 213-222.

[105]

IchiharaF, KonoK, TakahashiA, Kawaida H, SugaiH, FujiiH. Increased populations of regulatory T cells in peripheral blood and tumor-infiltrating lymphocytes in patients with gastric and esophageal cancers. Clin Cancer Res. 2003; 9(12): 4404-4408.

[106]

SasadaT, KimuraM, YoshidaY, Kanai M, TakabayashiA. CD4+CD25+ regulatory T cells in patients with gastrointestinal malignancies: possible involvement of regulatory T cells in disease progression. Cancer. 2003; 98(5): 1089-1099.

[107]

SchaeferC, KimGG, AlbersA, Hoermann K, MyersEN, WhitesideTL. Characteristics of CD4+CD25+ regulatory T cells in the peripheral circulation of patients with head and neck cancer. Br J Cancer. 2005; 92(5): 913-920.

[108]

LiyanageUK, MooreTT, JooHG, et al. Prevalence of regulatory T cells is increased in peripheral blood and tumor microenvironment of patients with pancreas or breast adenocarcinoma. J Immunol. 2002; 169(5): 2756-2761.

[109]

SuS, LiaoJ, LiuJ, et al. Blocking the recruitment of naive CD4(+) T cells reverses immunosuppression in breast cancer. Cell Res. 2017; 27(4): 461-482.

[110]

AlvisiG, Brummelman J, PuccioS, et al. IRF4 instructs effector Treg differentiation and immune suppression in human cancer. J Clin Invest. 2020; 130(6): 3137-3150.

[111]

AmulicB, Knackstedt SL, Abu AbedU, et al. Cell-cycle proteins control production of neutrophil extracellular traps. Dev Cell. 2017; 43(4): 449-462. e5.

[112]

van der LindenM, Westerlaken GHA, van der VlistM, van MontfransJ, Meyaard L. Differential signalling and kinetics of neutrophil extracellular trap release revealed by quantitative live imaging. Sci Rep. 2017; 7(1): 6529.

[113]

LawSM, GrayRD. Neutrophil extracellular traps and the dysfunctional innate immune response of cystic fibrosis lung disease: a review. J Inflamm (Lond). 2017; 14: 29.

[114]

CedervallJ, Dragomir A, SaupeF, et al. Pharmacological targeting of peptidylarginine deiminase 4 prevents cancer-associated kidney injury in mice. Oncoimmunology. 2017; 6(8): e1320009.

[115]

PodazaE, Sabbione F, RisnikD, et al. Neutrophils from chronic lymphocytic leukemia patients exhibit an increased capacity to release extracellular traps (NETs). Cancer Immunol Immunother. 2017; 66(1): 77-89.

[116]

MantovaniA, Allavena P, MarchesiF, GarlandaC. Macrophages as tools and targets in cancer therapy. Nat Rev Drug Discov. 2022; 21(11): 799-820.

[117]

TangH, ChenJ, HanX, FengY, WangF. Upregulation of SPP1 is a marker for poor lung cancer prognosis and contributes to cancer progression and cisplatin resistance. Front Cell Dev Biol. 2021; 9: 646390.

[118]

MatsubaraE, YanoH, PanC, et al. The significance of SPP1 in lung cancers and its impact as a marker for protumor tumor-associated macrophages. Cancers (Basel). 2023; 15(8): 2250.

RIGHTS & PERMISSIONS

2024 The Author(s). Clinical and Translational Medicine published by John Wiley & Sons Australia, Ltd on behalf of Shanghai Institute of Clinical Bioinformatics.

AI Summary AI Mindmap
PDF

185

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/