Comprehensive mapping of somatotroph pituitary neuroendocrine tumour heterogeneity using spatial and single-cell transcriptomics

Jialin Wang , Xuejing Li , Jing Guo , Zan Yuan , Xinyu Tong , Zehao Xiao , Meng Liu , Changxiaofeng Liu , Hongyun Wang , Lei Gong , Chuzhong Li , Yazhuo Zhang , Weiyan Xie , Chunhui Liu

Clinical and Translational Medicine ›› 2024, Vol. 14 ›› Issue (11) : e70090

PDF
Clinical and Translational Medicine ›› 2024, Vol. 14 ›› Issue (11) : e70090 DOI: 10.1002/ctm2.70090
RESEARCH ARTICLE

Comprehensive mapping of somatotroph pituitary neuroendocrine tumour heterogeneity using spatial and single-cell transcriptomics

Author information +
History +
PDF

Abstract

•The first-ever visualization of cellular distributions in normal and tumor pituitary tissues.

•The inter-and intra-tumoral transcriptomic heterogeneity of somatotroph PitNETs was comprehensively revealed.

•Identification of potential protumor factors and critical signaling pathways, opening new avenues for therapeutic intervention.

Keywords

somatotroph PitNETs / spatial transcriptomics / single-cell RNA sequencing / tumour heterogeneity

Cite this article

Download citation ▾
Jialin Wang, Xuejing Li, Jing Guo, Zan Yuan, Xinyu Tong, Zehao Xiao, Meng Liu, Changxiaofeng Liu, Hongyun Wang, Lei Gong, Chuzhong Li, Yazhuo Zhang, Weiyan Xie, Chunhui Liu. Comprehensive mapping of somatotroph pituitary neuroendocrine tumour heterogeneity using spatial and single-cell transcriptomics. Clinical and Translational Medicine, 2024, 14(11): e70090 DOI:10.1002/ctm2.70090

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ben-Shlomo A, Deng N, Ding E, et al. DNA damage and growth hormone hypersecretion in pituitary somatotroph adenomas. J Clin Invest. 2020;130(11):5738-5755.

[2]

Zhang F, Zhang Q, Zhu J, et al. Integrated proteogenomic characterization across major histological types of pituitary neuroendocrine tumours. Cell Res. 2022;32(12):1047-1067.

[3]

Kober P, Rymuza J, Baluszek S, et al. DNA methylation pattern in somatotroph pituitary neuroendocrine tumours. Neuroendocrinology. 2024;114(1):51-63.

[4]

Yamato A, Nagano H, Gao Y, et al. Proteogenomic landscape and clinical characterization of gh-producing pituitary adenomas/somatotroph pituitary neuroendocrine tumours. Commun Biol. 2022;5(1):1304.

[5]

Colao A, Grasso LFS, Giustina A, et al. Acromegaly. Nat Rev Dis Primers. 2019;5(1):20.

[6]

Colao A, Auriemma RS, Lombardi G, Pivonello R. Resistance to somatostatin analogs in acromegaly. Endocr Rev. 2011;32(2):247-271.

[7]

Fleseriu M, Langlois F, Lim DST, Varlamov EV, Melmed S. Acromegaly: pathogenesis, diagnosis, and management. Lancet Diabetes Endocrinol. 2022;10(11):804-826.

[8]

Zhang Q, Yao B, Long X, et al. Single-cell sequencing identifies differentiation-related markers for molecular classification and recurrence prediction of pitnet. Cell Rep Med. 2023;4(2):100934.

[9]

Wu L, Yan J, Bai Y, et al. An invasive zone in human liver cancer identified by stereo-seq promotes hepatocyte-tumour cell crosstalk, local immunosuppression and tumour progression. Cell Res. 2023;33(8):585-603.

[10]

Zhang XB, Lian PH, Su MM, et al. Single-cell transcriptome analysis identifies a unique tumour cell type producing multiple hormones in ectopic acth and crh secreting pheochromocytoma. eLife. 2021;10:e68436.

[11]

Asuzu DT, Alvarez R, Fletcher PA, et al. Pituitary adenomas evade apoptosis via noxa deregulation in Cushing’s disease. Cell Rep. 2022;40(8):111223.

[12]

Zhang D, Hugo W, Bergsneider M, et al. Single-cell rna sequencing in silent corticotroph tumours confirms impaired pomc processing and provides new insights into their invasive behavior. Eur J Endocrinol. 2022;187(1):49-64.

[13]

Yan N, Xie W, Wang D, et al. Single-cell transcriptomic analysis reveals tumour cell heterogeneity and immune microenvironment features of pituitary neuroendocrine tumours. Genome Med. 2024;16(1):2.

[14]

Cui Y, Li C, Jiang Z, et al. Single-cell transcriptome and genome analyses of pituitary neuroendocrine tumours. Neuro Oncol. 2021;23(11):1859-1871.

[15]

Lyu L, Jiang Y, Ma W, et al. Single-cell sequencing of pit1-positive pituitary adenoma highlights the pro-tumour microenvironment mediated by ifn-gamma-induced tumour-associated fibroblasts remodelling. Br J Cancer. 2023;128(6):1117-1133.

[16]

Arora R, Cao C, Kumar M, et al. Spatial transcriptomics reveals distinct and conserved tumour core and edge architectures that predict survival and targeted therapy response. Nat Commun. 2023;14(1):5029.

[17]

Wang F, Long J, Li L, et al. Single-cell and spatial transcriptome analysis reveals the cellular heterogeneity of liver metastatic colorectal cancer. Sci Adv. 2023;9(24):eadf5464.

[18]

Oyoshi H, Du JY, Sakai SA, et al. Comprehensive single-cell analysis demonstrates radiotherapy-induced infiltration of macrophages expressing immunosuppressive genes into tumour in esophageal squamous cell carcinoma. Sci Adv. 2023;9(50):eadh9069.

[19]

Peng L, Jin X, Li B-Y, et al. Integrating single-cell rna sequencing with spatial transcriptomics reveals immune landscape for interstitial cystitis. Signal Transduct Target Ther. 2022;7(1).

[20]

Qi J, Sun H, Zhang Y, et al. Single-cell and spatial analysis reveal interaction of fap+ fibroblasts and spp1+ macrophages in colorectal cancer. Nat Commun. 2022;13(1).

[21]

Bassiouni R, Idowu MO, Gibbs LD, et al. Spatial transcriptomic analysis of a diverse patient cohort reveals a conserved architecture in triple-negative breast cancer. Cancer Res. 2023;83(1):34-48.

[22]

Thrane K, Eriksson H, Maaskola J, Hansson J, Lundeberg J. Spatially resolved transcriptomics enables dissection of genetic heterogeneity in stage iii cutaneous malignant melanoma. Cancer Res. 2018;78(20):5970-5979.

[23]

Berglund E, Maaskola J, Schultz N, et al. Spatial maps of prostate cancer transcriptomes reveal an unexplored landscape of heterogeneity. Nat Commun. 2018;9(1):2419.

[24]

Li X, Wang CY. From bulk, single-cell to spatial rna sequencing. Int J Oral Sci. 2021;13(1):36.

[25]

Melmed S, Kaiser UB, Lopes MB, et al. Clinical biology of the pituitary adenoma. Endocr Rev. 2022;43(6):1003-1037.

[26]

Zhang S, Cui Y, Ma X, et al. Single-cell transcriptomics identifies divergent developmental lineage trajectories during human pituitary development. Nat Commun. 2020;11(1):5275.

[27]

Gao CF, Vande Woude GF. Hgf/sf-met signalling in tumour progression. Cell Res. 2005;15(1):49-51.

[28]

Vimalraj S. A concise review of vegf, pdgf, fgf, notch, angiopoietin, and hgf signalling in tumour angiogenesis with a focus on alternative approaches and future directions. Int J Biol Macromol. 2022;221:1428-1438.

[29]

Wang MH, Zhou XM, Zhang MY, et al. Bmp2 promotes proliferation and invasion of nasopharyngeal carcinoma cells via mtorc1 pathway. Aging. 2017;9(4):1326-1340.

[30]

Fukuda T, Fukuda R, Tanabe R, et al. Bmp signalling is a therapeutic target in ovarian cancer. Cell Death Discov. 2020;6(1):139.

[31]

Wang Y, Sakaguchi M, Sabit H, et al. Col1a2 inhibition suppresses glioblastoma cell proliferation and invasion. J Neurosurg. 2023;138(3):639-648.

[32]

Huo X, Ma S, Wang C, et al. Unravelling the role of immune cells and fn1 in the recurrence and therapeutic process of skull base chordoma. Clin Transl Med. 2023;13(10).

[33]

Kim M-C, Borcherding N, Ahmed KK, et al. Cd177 modulates the function and homeostasis of tumour-infiltrating regulatory T cells. Nat Commun. 2021;12(1).

[34]

Chhabra Y, Weeraratna AT. Fibroblasts in cancer: unity in heterogeneity. Cell. 2023;186(8):1580-1609.

[35]

Lin L, Lin DC. Biological significance of tumour heterogeneity in esophageal squamous cell carcinoma. Cancers. 2019;11(8):1156.

[36]

Marusyk A, Janiszewska M, Polyak K. Intratumor heterogeneity: the rosetta stone of therapy resistance. Cancer Cell. 2020;37(4):471-484.

[37]

Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646-674.

[38]

Marques P, Korbonits M. Tumour microenvironment and pituitary tumour behaviour. J Endocrinol Invest. 2023;46(6):1047-1063.

[39]

Marques P, Barry S, Carlsen E, et al. Pituitary tumour fibroblast-derived cytokines influence tumour aggressiveness. Endocr Relat Cancer. 2019;26(12):853-865.

[40]

Jiang Q, Lei Z, Wang Z, et al. Tumor-associated fibroblast-derived exosomal circdennd1b promotes pituitary adenoma progression by modulating the mir-145-5p/onecut2 axis and activating the mapk pathway. Cancers. 2023;15(13):3375.

[41]

Song ZJ, Reitman ZJ, Ma ZY, et al. The genome-wide mutational landscape of pituitary adenomas. Cell Res. 2016;26(11):1255-1259.

[42]

Bi WL, Horowitz P, Greenwald NF, et al. Landscape of genomic alterations in pituitary adenomas. Clin Cancer Res. 2017;23(7):1841-1851.

[43]

Pittaway JFH, Lipsos C, Mariniello K, Guasti L. The role of delta-like non-canonical notch ligand 1 (dlk1) in cancer. Endocr Relat Cancer. 2021;28(12):R271-R287.

[44]

Yin D, Xie D, Sakajiri S, et al. Dlk1: increased expression in gliomas and associated with oncogenic activities. Oncogene. 2006;25(13):1852-1861.

[45]

Takagi H, Zhao S, Muto S, et al. Delta-like 1 homolog (dlk1) as a possible therapeutic target and its application to radioimmunotherapy using 125i-labelled anti-dlk1 antibody in lung cancer models (hot1801 and fight004). Lung Cancer. 2021;153:134-142.

[46]

Huang C-C, Cheng S-H, Wu C-H, et al. Delta-like 1 homologue promotes tumorigenesis and epithelial-mesenchymal transition of ovarian high-grade serous carcinoma through activation of notch signalling. Oncogene. 2019;38(17):3201-3215.

[47]

Zhou Y, Li L, Tan J, et al. Dlk1 promotes lung cancer cell invasion through upregulation of mmp9 expression depending on notch signalling. PLoS One. 2014;9(3).

[48]

Fleseriu M, Biller BMK, Freda PU, et al. A pituitary society update to acromegaly management guidelines. Pituitary. 2020;24(1):1-13.

[49]

Asa SL, Mete O, Perry A, Osamura RY. Overview of the 2022 who classification of pituitary tumours. Endocr Pathol. 2022;33(1):6-26.

[50]

Satija R, Farrell JA, Gennert D, Schier AF, Regev A. Spatial reconstruction of single-cell gene expression data. Nat Biotechnol. 2015;33(5):495-502.

[51]

Stuart T, Butler A, Hoffman P, et al. Comprehensive integration of single-cell data. Cell. 2019;177(7):1888-1902. e1821.

[52]

Hao Y, Hao S, Andersen-Nissen E, et al. Integrated analysis of multimodal single-cell data. Cell. 2021;184(13):3573-3587. e3529.

[53]

Cillo AR, Kürten CHL, Tabib T, et al. Immune landscape of viral-and carcinogen-driven head and neck cancer. Immunity. 2020;52(1):183-199. e189.

[54]

Yu G, Wang L-G, Han Y, He Q-Y. Clusterprofiler: an r package for comparing biological themes among gene clusters. Omics. 2012;16(5):284-287.

[55]

Hänzelmann S, Castelo R, Guinney J. Gsva: gene set variation analysis for microarray and rna-seq data. BMC Bioinf. 2013;14:7.

RIGHTS & PERMISSIONS

2024 The Author(s). Clinical and Translational Medicine published by John Wiley & Sons Australia, Ltd on behalf of Shanghai Institute of Clinical Bioinformatics.

AI Summary AI Mindmap
PDF

140

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/