Extracellular vesicles derived from creeping fat stem cells promote lymphatic function and restrain inflammation of Crohn’s disease

Weigang Shu , Yongheng Wang , Mengfan Chen , Xiaoli Zhu , Fangtao Wang , Chunqiu Chen , Peng Du , Alexandra Bartolomucci , Xin Su , Xiaolei Wang

Clinical and Translational Medicine ›› 2024, Vol. 14 ›› Issue (12) : e70086

PDF
Clinical and Translational Medicine ›› 2024, Vol. 14 ›› Issue (12) : e70086 DOI: 10.1002/ctm2.70086
RESEARCH ARTICLE

Extracellular vesicles derived from creeping fat stem cells promote lymphatic function and restrain inflammation of Crohn’s disease

Author information +
History +
PDF

Abstract

•Extracellular vesicles (EVs) of creeping fat (CrF) derived adipose stem cells effectively attenuate chronic mesenteritis and colitis in Crohn’s disease (CD).

•The lymphatic vessels play an important role in disease development of CD and their functions are improved by CrF-EV-miR-132-3p through RASA1/ERK1/2 signaling.

•MiR-132-3p expression is upregulated in CrF and serum of CD patients, and tightly linked with inflammation and disease activity.

Keywords

adipose-derived stem cells / creeping fat / Crohn’s disease / extracellular vesicle / lymphatic function

Cite this article

Download citation ▾
Weigang Shu, Yongheng Wang, Mengfan Chen, Xiaoli Zhu, Fangtao Wang, Chunqiu Chen, Peng Du, Alexandra Bartolomucci, Xin Su, Xiaolei Wang. Extracellular vesicles derived from creeping fat stem cells promote lymphatic function and restrain inflammation of Crohn’s disease. Clinical and Translational Medicine, 2024, 14(12): e70086 DOI:10.1002/ctm2.70086

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

CrohnBB, Ginzburg L, OppenheimerGD. Regional ileitis; a pathologic and clinical entity. Am J Med. 1952; 13(5): 583-590.

[2]

MaoR, KuradaS, GordonIO, et al. The mesenteric fat and intestinal muscle interface: creeping fat influencing stricture formation in Crohn’s disease. Inflamm Bowel Dis. 2019; 25(3): 421-426.

[3]

HaCWY, MartinA, Sepich-PooreGD, et al. Translocation of viable gut microbiota to mesenteric adipose drives formation of creeping fat in humans. Cell. 2020; 183(3): e17.

[4]

TsounisEP, Aggeletopoulou I, MouzakiA, TriantosC. Creeping fat in the pathogenesis of Crohn’s disease: an orchestrator or a silent bystander? Inflamm Bowel Dis. 2023; 29(11): 1826-1836.

[5]

ZuoL, GengZ, SongX, et al. Browning of mesenteric white adipose tissue in Crohn’s disease: a new pathological change and therapeutic target. J Crohns Colitis. 2023; 17(8): 1179-1192.

[6]

DesreumauxP, ErnstO, GeboesK, et al. Inflammatory alterations in mesenteric adipose tissue in Crohn’s disease. Gastroenterology. 1999; 117(1): 73-81.

[7]

ShenW, LiY, ZouY, et al. Mesenteric adipose tissue alterations in Crohn’s disease are associated with the lymphatic system. Inflamm Bowel Dis. 2019; 25(2): 283-293.

[8]

ShawTJ, ZhangXY, HuoZ, et al. Human peritoneal mesothelial cells display phagocytic and antigen-presenting functions to contribute to intraperitoneal immunity. Int J Gynecol Cancer. 2016; 26(50): 833-838.

[9]

Monfort-FerréD, Caro A, MenachoM. The gut microbiota metabolite succinate promotes adipose tissue browning in Crohn’s disease. J Crohns Colitis. 2022; 16(10): 1571-1583.

[10]

SongY, YouY, XuX, et al. Adipose-derived mesenchymal stem cell-derived exosomes biopotentiated extracellular matrix hydrogels accelerate diabetic wound healing and skin regeneration. Adv Sci (Weinh). 2023; 10(30): e230. 4023.

[11]

XiaL, ZhangC, LvN, et al. AdMSC-derived exosomes alleviate acute lung injury via transferring mitochondrial component to improve homeostasis of alveolar macrophages. Theranostics. 2022; 12(6): 2928-2947.

[12]

QianW, XuY, WenW, et al. Exosomal miR-103a-3p from Crohn’s creeping fat-derived adipose-derived stem cells contributes to intestinal fibrosis by targeting TGFBR3 and activating fibroblasts. J Crohns Colitis. 2023; 17(8): 1291-1308.

[13]

LiY, ZhuW, ZuoL, ShenB. The role of the mesentery in Crohn’s disease: the contributions of nerves, vessels, lymphatics, and fat to the pathogenesis and disease course. Inflamm Bowel Dis. 2016; 22(6): 1483-1495.

[14]

HuangLH, DeepakP, CiorbaMA, et al. Postprandial chylomicron output and transport through intestinal lymphatics are not impaired in active Crohn’s disease. Gastroenterology. 2020; 159(5):1955-1957. e2.

[15]

von der WeidPY, RehalS, FerrazJG. Role of the lymphatic system in the pathogenesis of Crohn’s disease. Curr Opin Gastroenterol. 2011; 27(4): 335-341.

[16]

GonçalvesP, Magro F, MartelF. Metabolic inflammation in inflammatory bowel disease: crosstalk between adipose tissue and bowel. Inflamm Bowel Dis. 2015; 21(2): 453-467.

[17]

LiY, GeY, GongJ, et al. Mesenteric lymphatic vessel density is associated with disease behavior and postoperative recurrence in Crohn’s disease. J Gastrointest Surg. 2018; 22(12): 2125-2132.

[18]

ZhangL, YeC, LiP, et al. ADSCs stimulated by VEGF-C alleviate intestinal inflammation via dual mechanisms of enhancing lymphatic drainage by a VEGF-C/VEGFR-3-dependent mechanism and inhibiting the NF-κB pathway by the secretome. Stem Cell Res Ther. 2022; 13(1): 448.

[19]

WangW, LiX, DingX, et al. Lymphatic endothelial transcription factor Tbx1 promotes an immunosuppressive microenvironment to facilitate post-myocardial infarction repair. Immunity. 2023; 56(10): 2342-2357.

[20]

TewaltEF, CohenJN, RouhaniSJ, Engelhard VH. Lymphatic endothelial cells—key players in regulation of tolerance and immunity. Front Immunol. 2012; 3: 305.

[21]

GuP, DubeS, McGovernDPB. Medical and surgical implications of mesenteric adipose tissue in Crohn’s disease: a review of the literature. Inflamm Bowel Dis. 2023; 29(3): 458-469.

[22]

D’AlessioS, Correale C, TacconiC, et al. VEGF-C-dependent stimulation of lymphatic function ameliorates experimental inflammatory bowel disease. J Clin Invest. 2014; 124(9): 3863-3878.

[23]

GeY, LiY, ChenQ, et al. Adipokine apelin ameliorates chronic colitis in Il-10 -/– mice by promoting intestinal lymphatic functions. Biochem Pharmacol. 2018; 148: 202-212.

[24]

YinY, YangJ, PanY, et al. Chylomicrons-simulating sustained drug release in mesenteric lymphatics for the treatment of Crohn’s-like colitis. J Crohns Colitis. 2021; 15(4): 631-646.

[25]

SuX, Brassard A, BartolomucciA, et al. Tumour extracellular vesicles induce neutrophil extracellular traps to promote lymph node metastasis. J Extracell Vesicles. 2023; 12(8): e12341.

[26]

WangX, WangH, CaoJ, YeC. Exosomes from adipose-derived stem cells promotes VEGF-C-dependent lymphangiogenesis by regulating miRNA-132/TGF-β pathway. Cell Physiol Biochem. 2018; 49(1): 160-171.

[27]

ShuW, WangY, DejiZ, et al. Infliximab modifies CD74-mediated lymphatic abnormalities and adipose tissue alterations in creeping fat of Crohn’s disease. Inflamm Res. 2024;73(7):1157-1172.

[28]

ThéryC, WitwerKW, AikawaE, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for extracellular vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles. 2018; 7(1): 1535750.

[29]

LiJ, ZuoL, GengZ, et al. Pygopus2 ameliorates mesenteric adipocyte poor differentiation to alleviate Crohn’s disease-like colitis via the Axin2/GSK3β pathway. Cell Prolif. 2022; 55(10): e13292.

[30]

SonMJ, OhKJ, ParkA, et al. GATA3 induces the upregulation of UCP-1 by directly binding to PGC-1alpha during adipose tissue browning. Metabolism. 2020; 109: 154280.

[31]

ZhangJ, LiS, LiL, et al. Exosome and exosomal microRNA: trafficking, sorting, and function. Genomics Proteomics Bioinformatics. 2015; 13(1): 17-24.

[32]

Garcia-MartinR, WangG, BrandãoBB, et al. MicroRNA sequence codes for small extracellular vesicle release and cellular retention. Nature. 2022; 601(7893): 446-451.

[33]

MoriMA, LudwigRG, Garcia-MartinR, BrandãoBB, Kahn CR. Extracellular miRNAs: from biomarkers to mediators of physiology and disease. Cell Metab. 2019; 30(4): 656-673.

[34]

BatthTS, Papetti M, PfeifferA, TollenaereMAX, Francavilla C, OlsenJV. Large-scale phosphoproteomics reveals shp-2 phosphatase-dependent regulators of PDGF receptor signaling. Cell Rep. 2018; 22(10): 2784-2796.

[35]

GongB, LiuWW, NieWJ, et al. MiR-21/RASA1 axis affects malignancy of colon cancer cells via RAS pathways. World J Gastroenterol. 2015; 21(5): 1488-1497.

[36]

ChenD, TengJM, NorthPE, Lapinski PE, KingPD. RASA1-dependent cellular export of collagen IV controls blood and lymphatic vascular development. J Clin Invest. 2019; 129(9): 3545-3561.

[37]

MengY, LvT, ZhangJ, et al. Temporospatial inhibition of Erk signaling is required for lymphatic valve formation. Signal Transduct Target Ther. 2023; 8(1): 342.

[38]

SugayaM, FangL, CardonesAR, et al. Oncostatin M enhances CCL21 expression by microvascular endothelial cells and increases the efficiency of dendritic cell trafficking to lymph nodes. J Immunol. 2006; 177(11): 7665-7672.

[39]

CalpeE, CodonyC, BaptistaMJ, et al. ZAP-70 enhances migration of malignant B lymphocytes toward CCL21 by inducing CCR7 expression via IgM-ERK1/2 activation. Blood. 2011; 18(16): 4401-4410.

[40]

LiangZX, LiuHS, XiongL, et al. GAS6 from CD200+ adipose-derived stem cells mitigates colonic inflammation in a macrophage-dependent manner. J Crohns Colitis. 2023; 17(2): 289-301.

[41]

WuF, WuF, ZhouQ, et al. A CCL2(+)DPP4(+) subset of mesenchymal stem cells expedites aberrant formation of creeping fat in humans. Nat Commun. 2023; 14(1): 5830.

[42]

GeraldoLH, GarciaC, XuY, et al. CCL21-CCR7 signaling promotes microglia/macrophage recruitment and chemotherapy resistance in glioblastoma. Cell Mol Life Sci. 2023; 80(7): 179.

[43]

LuoY, DuanH, QianY, et al. Macrophagic CD146 promotes foam cell formation and retention during atherosclerosis. Cell Res. 2017; 27(3): 352-372.

[44]

WangXL, ZhaoJ, QinL, CaoJL. VEGFR-3 blocking deteriorates inflammation with impaired lymphatic function and different changes in lymphatic vessels in acute and chronic colitis. Am J Transl Res. 2016; 8(2): 827-841.

[45]

MadeiraA, SerenaC, EjarqueM, et al. Crohn’s disease increases the mesothelial properties of adipocyte progenitors in the creeping fat. Int J Mol Sci. 2021; 22(8): 4292.

[46]

SerenaC, MillanM, EjarqueM, et al. Adipose stem cells from patients with Crohn’s disease show a distinctive DNA methylation pattern. Clin Epigenetics. 2020; 12(1): 53.

[47]

QianW, HuangL, XuY, et al. Hypoxic ASCs-derived exosomes attenuate colitis by regulating macrophage polarization via miR-216a-5p/HMGB1 axis. Inflamm Bowel Dis. 2023; 29(4): 602-619.

[48]

AnJH, LiQ, BhangDH, Song WJ, YounHY. TNF-α and INF-γ primed canine stem cell-derived extracellular vesicles alleviate experimental murine colitis. Sci Rep. 2020; 10(1): 2115.

[49]

PanQ, KuangX, CaiS, et al. miR-132-3p priming enhances the effects of mesenchymal stromal cell-derived exosomes on ameliorating brain ischemic injury. Stem Cell Res Ther. 2020; 11(1): 260.

[50]

LinQY, ZhangYL, BaiJ, LiuJQ, LiHH. VEGF-C/VEGFR-3 axis protects against pressure-overload induced cardiac dysfunction through regulation of lymphangiogenesis. Clin Transl Med. 2021; 11(3): e374.

[51]

LianJ, ZhuX, DuJ, et al. Extracellular vesicle-transmitted miR-671-5p alleviates lung inflammation and injury by regulating the AAK1/NF-kappaB axis. Mol Ther. 2023; 31(5): 1365-1382.

[52]

BhattacharyaP, DhawanUK, HussainMT, et al. Efferocytes release extracellular vesicles to resolve inflammation and tissue injury via prosaposin-GPR37 signaling. Cell Rep. 2023; 42(7): 112808.

[53]

Salazar-PuertaAI, Rincon-Benavides MA, Cuellar-GaviriaTZ, et al. Engineered extracellular vesicles derived from dermal fibroblasts attenuate inflammation in a murine model of acute lung injury. Adv Mater. 2023; 35(28): e2210579.

[54]

MaharshakN, Shenhar-Tsarfaty S, AroyoN, et al. MicroRNA-132 modulates cholinergic signaling and inflammation in human inflammatory bowel disease. Inflamm Bowel Dis. 2013; 19(7): 1346-1353.

[55]

AlzahraniAM, HaniehH, IbrahimHM, et al. Enhancing miR-132 expression by aryl hydrocarbon receptor attenuates tumorigenesis associated with chronic colitis. Int Immunopharmacol. 2017; 52: 342-351.

[56]

KaribaY, Yoshizawa T, SatoY, TsuyamaT, ArakiE, YamagataK. Brown adipocyte-derived exosomal miR-132-3p suppress hepatic Srebf1 expression and thereby attenuate expression of lipogenic genes. Biochem Biophys Res Commun. 2020; 530(3): 500-507.

[57]

HuangCY, ChangAC, ChenHT, et al. Adiponectin promotes VEGF-C-dependent lymphangiogenesis by inhibiting miR-27b through a CaMKII/AMPK/p38 signaling pathway in human chondrosarcoma cells. Clin Sci. 2016; 130(17): 1523-1533.

[58]

GottmannP, OuniM, SaussenthalerS, et al. A computational biology approach of a genome-wide screen connected miRNAs to obesity and type 2 diabetes. Mol Metab. 2018; 11: 145-159.

[59]

HongH, HeC, ZhuS, et al. CCR7 mediates the TNF-alpha-induced lymphatic metastasis of gallbladder cancer through the “ERK1/2-AP-1” and “JNK-AP-1” pathways. J Exp Clin Cancer Res. 2016; 35: 31.

[60]

PakHK, KimYW, NamB, et al. The migration of human follicular dendritic cell-like cell is facilitated by matrix metalloproteinase 3 expression that is mediated through TNF alpha-ERK1/2-AP1 signaling. J Immunol Res. 2021; 2021: 8483938.

RIGHTS & PERMISSIONS

2024 The Author(s). Clinical and Translational Medicine published by John Wiley & Sons Australia, Ltd on behalf of Shanghai Institute of Clinical Bioinformatics.

AI Summary AI Mindmap
PDF

109

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/