Targeting endoplasmic reticulum stress-induced lymphatic dysfunction for mitigating bisphosphonate-related osteonecrosis

Ziyue Qin , Hanyu Xie , Pengcheng Su , Zesheng Song , Rongyao Xu , Songsong Guo , Yu Fu , Ping Zhang , Hongbing Jiang

Clinical and Translational Medicine ›› 2024, Vol. 14 ›› Issue (11) : e70082

PDF
Clinical and Translational Medicine ›› 2024, Vol. 14 ›› Issue (11) : e70082 DOI: 10.1002/ctm2.70082
RESEARCH ARTICLE

Targeting endoplasmic reticulum stress-induced lymphatic dysfunction for mitigating bisphosphonate-related osteonecrosis

Author information +
History +
PDF

Abstract

•Bisphosphonate-induced lymphatic drainage impairment exacerbates bone necrosis.

•Zoledronate acid triggers endoplasmic reticulum stress and apoptosis in lymphatic endothelial cells via the NAD+/SIRT6/XBP1s pathway.

•Novel nanoparticle-loaded Zoledronate acid and rapamycin enhances autophagy, restores lymphatic function, and mitigates bisphosphonates-related osteonecrosis of the jaw progression.

Keywords

autophagy / bisphosphonates / endoplasmic reticulum stress / lymphatic drainage / osteonecrosis

Cite this article

Download citation ▾
Ziyue Qin, Hanyu Xie, Pengcheng Su, Zesheng Song, Rongyao Xu, Songsong Guo, Yu Fu, Ping Zhang, Hongbing Jiang. Targeting endoplasmic reticulum stress-induced lymphatic dysfunction for mitigating bisphosphonate-related osteonecrosis. Clinical and Translational Medicine, 2024, 14(11): e70082 DOI:10.1002/ctm2.70082

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Favus MJ. Bisphosphonates for osteoporosis. N Engl J Med. 2010;363(21):2027-2035.

[2]

Ensrud KE. Bisphosphonates for postmenopausal osteoporosis. JAMA. 2021;325(1):96.

[3]

Phillips J, Subedi D, Lewis SC, et al. Randomised trial of genetic testing and targeted intervention to prevent the development and progression of Paget’s disease of bone. Ann Rheum Dis. 2024;83(4):529-536.

[4]

Lund T, Gundesen MT, Juul Vangsted A, et al. In multiple myeloma, monthly treatment with zoledronic acid beyond two years offers sustained protection against progressive bone disease. Blood Cancer J. 2024;14(1):65.

[5]

Xu Q, Zhan P, Li X, et al. Bisphosphonate-enoxacin inhibit osteoclast formation and function by abrogating RANKL-induced JNK signalling pathways during osteoporosis treatment. J Cell Mol Med. 2021;25(21):10126-10139.

[6]

Sim I-W, Borromeo GL, Tsao C, et al. Teriparatide promotes bone healing in medication-related osteonecrosis of the jaw: a placebo-controlled, randomized trial. J Clin Oncol. 2020;38(26):2971-2980.

[7]

Otto S, Pautke C, Van den Wyngaert T, Niepel D, Schiødt M. Medication-related osteonecrosis of the jaw: prevention, diagnosis and management in patients with cancer and bone metastases. Cancer Treat Rev. 2018;69:177-187.

[8]

Chen Y-F, Chang H-P. Medication-related osteonecrosis of the jaw. N Engl J Med. 2023;388(21):e69.

[9]

Yamashita J, Sawa N, Sawa Y, Miyazono S. Effect of bisphosphonates on healing of tooth extraction wounds in infectious osteomyelitis of the jaw. Bone. 2021;143:115611.

[10]

Zhou S, Zhao G, Chen R, et al. Lymphatic vessels: roles and potential therapeutic intervention in rheumatoid arthritis and osteoarthritis. Theranostics. 2024;14(1):265-282.

[11]

Ahn JH, Cho H, Kim JH, et al. Meningeal lymphatic vessels at the skull base drain cerebrospinal fluid. Nature. 2019;572(7767):62-66.

[12]

Shah T, Leurgans SE, Mehta RI, et al. Arachnoid granulations are lymphatic conduits that communicate with bone marrow and dura-arachnoid stroma. J Exp Med. 2023;220(2):e20220618.

[13]

Biswas L, Chen J, De Angelis J, et al. Lymphatic vessels in bone support regeneration after injury. Cell. 2023;186(2):382-397. e24.

[14]

Hsu M, Laaker C, Madrid A, et al. Neuroinflammation creates an immune regulatory niche at the meningeal lymphatic vasculature near the cribriform plate. Nat Immunol. 2022;23(4):581-593.

[15]

Kuroshima S, Yamashita J. Chemotherapeutic and antiresorptive combination therapy suppressed lymphangiogenesis and induced osteonecrosis of the jaw-like lesions in mice. Bone. 2013;56(1):101-109.

[16]

Lu Y, Wang Z, Han W, Li H. Zoledronate induces autophagic cell death in human umbilical vein endothelial cells via Beclin-1 dependent pathway activation. Mol Med Rep. 2016;14(5):4747-4754.

[17]

Budzinska A, Galganski L, Jarmuszkiewicz W. The bisphosphonates alendronate and zoledronate induce adaptations of aerobic metabolism in permanent human endothelial cells. Sci Rep. 2023;13(1):16205.

[18]

Qu XZ, Sun ZQ, Liu L, Ong HS. Zoledronic acid accelerates ER stress-mediated inflammation by increasing PDE4B expression in bisphosphonate-related osteonecrosis of the jaw. Appl Biochem Biotechnol. Published online:25 March 2024.

[19]

Chen X, Shi C, He M, Xiong S, Xia X. Endoplasmic reticulum stress: molecular mechanism and therapeutic targets. Signal Transduct Target Ther. 2023;8(1):352.

[20]

Bhardwaj M, Leli NM, Koumenis C, Amaravadi RK. Regulation of autophagy by canonical and non-canonical ER stress responses. Semin Cancer Biol. 2020;66:116-128.

[21]

Wiseman RL, Mesgarzadeh JS, Hendershot LM. Reshaping endoplasmic reticulum quality control through the unfolded protein response. Mol Cell. 2022;82(8):1477-1491.

[22]

Glimcher LH, Lee AH, Iwakoshi NN. XBP-1 and the unfolded protein response (UPR). Nat Immunol. 2020;21(9):963-965.

[23]

Hetz C, Zhang K, Kaufman RJ. Mechanisms, regulation and functions of the unfolded protein response. Nat Rev Mol Cell Biol. 2020;21(8):421-438.

[24]

Li P, Guo Z, Feng R, et al. Multi-omics analysis reveals the regulation of SIRT6 on protein processing of endoplasmic reticulum to alleviate oxidative stress in endothelial cells. Clin Transl Med. 2022;12(8):e1039.

[25]

Roichman A, Elhanati S, Aon MA, et al. Restoration of energy homeostasis by SIRT6 extends healthy lifespan. Nat Commun. 2021;12(1):3208.

[26]

Bang IH, Kwon OK, Hao L, et al. Deacetylation of XBP1s by sirtuin 6 confers resistance to ER stress-induced hepatic steatosis. Exp Mol Med. 2019;51(9):1-11.

[27]

Guo Z, Yu X, Zhao S, et al. SIRT6 deficiency in endothelial cells exacerbates oxidative stress by enhancing HIF1α accumulation and H3K9 acetylation at the Ero1α promoter. Clin Transl Med. 2023;13(8):e1377.

[28]

Park SY, Cho W, Abd El-Aty AM, Hacimuftuoglu A, Jeong JH, Jung TW. Valdecoxib attenuates lipid-induced hepatic steatosis through autophagy-mediated suppression of endoplasmic reticulum stress. Biochem Pharmacol. 2022;199:115022.

[29]

Okawa H, Kondo T, Hokugo A, et al. Mechanism of bisphosphonate-related osteonecrosis of the jaw (BRONJ) revealed by targeted removal of legacy bisphosphonate from jawbone using competing inert hydroxymethylene diphosphonate. eLife. 2022;11:e76207.

[30]

Oliver G, Kipnis J, Randolph GJ, Harvey NL. The lymphatic vasculature in the 21(st) century: novel functional roles in homeostasis and disease. Cell. 2020;182(2):270-296.

[31]

Ramasamy SK, Kusumbe AP, Itkin T, Gur-Cohen S, Lapidot T, Adams RH. Regulation of hematopoiesis and osteogenesis by blood vessel-derived signals. Ann Rev Cell Dev Biol. 2016;32:649-675.

[32]

Zheng Y, Wang P, Zhao L, et al. A novel therapy for fracture healing by increasing lymphatic drainage. J Ortho Transl. 2024;45:66-74.

[33]

Vishlaghi N, Guo L, Griswold-Wheeler D, et al. Vegfc-expressing cells form heterotopic bone after musculoskeletal injury. Cell Rep. 2024;43(4):114049.

[34]

Savino S, Toscano A, Purgatorio R, et al. Novel bisphosphonates with antiresorptive effect in bone mineralization and osteoclastogenesis. Eur J Med Chem. 2018;158:184-200.

[35]

Sun S, Tao J, Sedghizadeh PP, et al. Bisphosphonates for delivering drugs to bone. Br J Pharmacol. 2021;178(9):2008-2025.

[36]

Xia Y, Xie Y, Yu Z, et al. The mevalonate pathway is a druggable target for vaccine adjuvant discovery. Cell. 2018;175(4):1059-1073.e1021.

[37]

Arun MZ, Reel B, Sala-Newby GB, et al. Zoledronate upregulates MMP-9 and -13 in rat vascular smooth muscle cells by inducing oxidative stress. Drug Des Dev Ther. 2016;10:1453-1460.

[38]

Kara M, Boran T, Öztaş E, Jannuzzi AT, Özden S, Özhan G. Zoledronic acid-induced oxidative damage and endoplasmic reticulum stress-mediated apoptosis in human embryonic kidney (HEK-293) cells. J Biochem Mol Toxicol. 2022;36(8):e23083.

[39]

Bhatia S, Udgaonkar JB. Heterogeneity in protein folding and unfolding reactions. Chem Rev. 2022;122(9):8911-8935.

[40]

Cybulsky AV. Endoplasmic reticulum stress, the unfolded protein response and autophagy in kidney diseases. Nat Rev Nephrol. 2017;13(11):681-696.

[41]

Zhang R, Bian C, Gao J, Ren H. Endoplasmic reticulum stress in diabetic kidney disease: adaptation and apoptosis after three UPR pathways. Apoptosis. 2023;28(7-8):977-996.

[42]

Yang Y, Lu D, Wang M, et al. Endoplasmic reticulum stress and the unfolded protein response: emerging regulators in progression of traumatic brain injury. Cell Death Dis. 2024;15(2):156.

[43]

Azizi M, Salehi-Mazandarani S, Nikpour P, Andalib A, Rezaei M. The role of unfolded protein response-associated miRNAs in immunogenic cell death amplification: a literature review and bioinformatics analysis. Life Sci. 2023;314:121341.

[44]

Madhavan A, Kok BP, Rius B, et al. Pharmacologic IRE1/XBP1s activation promotes systemic adaptive remodeling in obesity. Nat Commun. 2022;13(1):608.

[45]

Adchariyasakulchai P, Sakunrangsit N, Chokyakorn S, Suksanong C, Ketchart W. Anticancer effect of zoledronic acid in endocrine-resistant breast cancer cells via HER-2 signaling. Biomed Pharmacother. 2024;171:116142.

[46]

Zhu JH, Liu MH, Liu YF, Zhang YT, Yang B, Zhang W. Zoledronic acid regulates autophagy and induces apoptosis in colon cancer cell line CT26. Biomed Res Int. 2017;2017.

[47]

Khandelwal VKM, Mitrofan LM, Hyttinen JMT, et al. Oxidative stress plays an important role in zoledronic acid-induced autophagy. Physiol Res. 2014;63:S601-S612.

[48]

Peng Y, Qiu L, Xu D, et al. M4IDP, a zoledronic acid derivative, induces G1 arrest, apoptosis and autophagy in HCT116 colon carcinoma cells via blocking PI3K/Akt/mTOR pathway. Life Sci. 2017;185:63-72.

[49]

Xue Q, Kang R, Klionsky DJ, Tang D, Liu J, Chen X. Copper metabolism in cell death and autophagy. Autophagy. 2023;19(8):2175-2195.

[50]

Emdad L, Bhoopathi P, Talukdar S, et al. Recent insights into apoptosis and toxic autophagy: the roles of MDA-7/IL-24, a multidimensional anti-cancer therapeutic. Semin Cancer Biol. 2020;66:140-154.

[51]

Kessel D, Reiners JJ. Photodynamic therapy: autophagy and mitophagy, poptosis and paraptosis. Autophagy. 2020;16(11):2098-2101.

[52]

Rigg N, Abu-Hijleh FA, Patel V, Mishra RK. Ketamine-induced neurotoxicity is mediated through endoplasmic reticulum stress in vitro in STHdh(Q7/Q7) cells. Neurotoxicology. 2022;91:321-328.

[53]

Seo EH, Piao L, Cho EH, Hong SW, Kim SH. The effect of ketamine on endoplasmic reticulum stress in rats with neuropathic pain. Int J Mol Sci. 2023;24(6).

[54]

Liu KM, Chuang SM, Long CY, et al. Ketamine-induced ulcerative cystitis and bladder apoptosis involve oxidative stress mediated by mitochondria and the endoplasmic reticulum. Am J Physiol Ren Physiol. 2015;309(4):F318-331.

[55]

Lin JW, Lin YC, Liu JM, et al. Norketamine, the main metabolite of ketamine, induces mitochondria-dependent and ER stress-triggered apoptotic death in urothelial cells via a Ca(2+)-regulated ERK1/2-activating pathway. Int J Mol Sci. 2022;23(9).

[56]

Du H, Li J, Wei X, et al. Methylparaben induces hepatic glycolipid metabolism disorder by activating the IRE1α-XBP1 signaling pathway in male mice. Environ Int. 2024;184:108445.

[57]

Yu S, Gu X, Zheng Q, et al. Tauroursodeoxycholic acid ameliorates renal injury induced by COL4A3 mutation. Kidney Int. 2024;106(3):433-449.

[58]

Gadallah SH, Ghanem HM, Abdel-Ghaffar A, Metwaly FG, Hanafy LK, Ahmed EK. 4-Phenylbutyric acid and rapamycin improved diabetic status in high fat diet/streptozotocin-induced type 2 diabetes through activation of autophagy. Arch Physiol Biochem. 2021;127(3):235-244.

[59]

Naama M, Bel S. Autophagy-ER stress crosstalk controls mucus secretion and susceptibility to gut inflammation. Autophagy. 2023;19(11):3014-3016.

[60]

Ahmadi A, Hayes AW, Karimi G. Resveratrol and endoplasmic reticulum stress: a review of the potential protective mechanisms of the polyphenol. Phytother Res. 2021;35(10):5564-5583.

[61]

Wilson N, Kataura T, Korsgen ME, Sun C, Sarkar S, Korolchuk VI. The autophagy-NAD axis in longevity and disease. Trends Cell Biol. 2023;33(9):788-802.

[62]

Kataura T, Sedlackova L, Sun C, et al. Targeting the autophagy-NAD axis protects against cell death in Niemann-Pick type C1 disease models. Cell Death Dis. 2024;15(5):382.

[63]

Kato M, Ospelt C, Gay RE, Gay S, Klein K. Dual role of autophagy in stress-induced cell death in rheumatoid arthritis synovial fibroblasts. Arth Rheumatol. 2014;66(1):40-48.

[64]

Shen X, Zhu W, Zhang P, et al. Macrophage miR-149-5p induction is a key driver and therapeutic target for BRONJ. JCI Insight. 2022;7(16):e159865.

[65]

Xu R, Xie H, Shen X, et al. Impaired efferocytosis enables apoptotic osteoblasts to escape osteoimmune surveillance during aging. Adv Sci. 2023;10(36):e2303946.

RIGHTS & PERMISSIONS

2024 The Author(s). Clinical and Translational Medicine published by John Wiley & Sons Australia, Ltd on behalf of Shanghai Institute of Clinical Bioinformatics.

AI Summary AI Mindmap
PDF

125

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/