Unsupervised learning-derived phenotypes for personalized fluid management in critically ill patients with heart failure: A multicenter study

Chengjian Guan , Angwei Gong , Yan Zhao , Hangtian Yu , Shuaidan Zhang , Zhiyi Xie , Yehui Jin , Xiuchun Yang , Jingchao Lu , Bing Xiao

Clinical and Translational Medicine ›› 2024, Vol. 14 ›› Issue (11) : e70081

PDF
Clinical and Translational Medicine ›› 2024, Vol. 14 ›› Issue (11) : e70081 DOI: 10.1002/ctm2.70081
LETTER TO THE JOURNAL

Unsupervised learning-derived phenotypes for personalized fluid management in critically ill patients with heart failure: A multicenter study

Author information +
History +
PDF

Cite this article

Download citation ▾
Chengjian Guan, Angwei Gong, Yan Zhao, Hangtian Yu, Shuaidan Zhang, Zhiyi Xie, Yehui Jin, Xiuchun Yang, Jingchao Lu, Bing Xiao. Unsupervised learning-derived phenotypes for personalized fluid management in critically ill patients with heart failure: A multicenter study. Clinical and Translational Medicine, 2024, 14(11): e70081 DOI:10.1002/ctm2.70081

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Machado d’Almeida KS, Rabelo-Silva ER, Souza GC, et al. Aggressive fluid and sodium restriction in decompensated heart failure with preserved ejection fraction: results from a randomized clinical trial. Nutrition. 2018;54:111-117.

[2]

Holst M, Strömberg A, Lindholm M, Willenheimer R. Liberal versus restricted fluid prescription in stabilised patients with chronic heart failure: result of a randomised cross-over study of the effects on health-related quality of life, physical capacity, thirst and morbidity. Scand Cardiovasc J. 2008;42(5):316-322.

[3]

Mullens W, Damman K, Dhont S, et al. Dietary sodium and fluid intake in heart failure. A clinical consensus statement of the Heart Failure Association of the ESC. Eur J Heart Fail. 2024;26(4):730-741.

[4]

Johnson AEW, Bulgarelli L, Shen L, et al. MIMIC-IV, a freely accessible electronic health record dataset. Sci Data. 2023;10(1):1.

[5]

Pollard TJ, Johnson AEW, Raffa JD, Celi LA, Mark RG, Badawi O. The eICU Collaborative Research Database, a freely available multi-center database for critical care research. Sci Data. 2018;5:180178.

[6]

Fot EV, Khromacheva NO, Ushakov AA, Smetkin AA, Kuzkov VV, Kirov MY. Optimizing fluid management guided by volumetric parameters in patients with sepsis and ARDS. Int J Mol Sci. 2023;24(10):8768.

[7]

Wang W, Zhu S, He Q, et al. Fluid balance and ventilator-associated events among patients admitted to ICUs in China: a nested case-control study. Crit Care Med. 2022;50(2):307-316.

[8]

Matsue Y, Kamiya K, Saito H, et al. Prevalence and prognostic impact of the coexistence of multiple frailty domains in elderly patients with heart failure: the FRAGILE-HF cohort study. Eur J Heart Fail. 2020;22(11):2112-2119.

[9]

Beagle AJ, Prasad PA, Hubbard CC, et al. Associations between volume of early intravenous fluid and hospital outcomes in septic patients with and without heart failure: a retrospective cohort study. Crit Care Explor. 2024;6(5):e1082.

[10]

Balakumar V, Murugan R, Sileanu FE, Palevsky . Both positive and negative fluid balance may be associated with reduced long-term survival in the critically ill. Crit Care Med. 2017;45(8):e749-e757.

RIGHTS & PERMISSIONS

2024 The Author(s). Clinical and Translational Medicine published by John Wiley & Sons Australia, Ltd on behalf of Shanghai Institute of Clinical Bioinformatics.

AI Summary AI Mindmap
PDF

95

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/