Induced collagen type-I secretion by hepatocytes of the melanoma liver metastasis is associated with a reduction in tumour-infiltrating lymphocytes

Shodai Mizuno , Matias A. Bustos , Yoshinori Hayashi , Kodai Abe , Satoru Furuhashi , Yalda Naeini , Xiaowei Xu , Anton J Bilchik , Dave S. B. Hoon

Clinical and Translational Medicine ›› 2024, Vol. 14 ›› Issue (11) : e70067

PDF
Clinical and Translational Medicine ›› 2024, Vol. 14 ›› Issue (11) : e70067 DOI: 10.1002/ctm2.70067
RESEARCH ARTICLE

Induced collagen type-I secretion by hepatocytes of the melanoma liver metastasis is associated with a reduction in tumour-infiltrating lymphocytes

Author information +
History +
PDF

Abstract

•Spatial analyses of melanoma liver metastasis show that adjacent normal hepatocytes have increased collagen-type I levels.

•Melanoma liver metastases tumour cells secrete enhanced levels of TNF-α to stimulate CXCR4/CXCL12 upregulation in adjacent normal hepatocytes.

•Activation of CXCR4 promotes AKT and NF-κB signalling pathways to promote collagen-type I secretion in adjacent normal hepatocytes.

•Elevated collagen levels were associated with reduced tumour-infiltrating lymphocytes

Keywords

collagen / melanoma liver metastasis / normal hepatocytes / spatial analysis / tumour-microenvironment

Cite this article

Download citation ▾
Shodai Mizuno, Matias A. Bustos, Yoshinori Hayashi, Kodai Abe, Satoru Furuhashi, Yalda Naeini, Xiaowei Xu, Anton J Bilchik, Dave S. B. Hoon. Induced collagen type-I secretion by hepatocytes of the melanoma liver metastasis is associated with a reduction in tumour-infiltrating lymphocytes. Clinical and Translational Medicine, 2024, 14(11): e70067 DOI:10.1002/ctm2.70067

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Shain AH, Bastian BC. From melanocytes to melanomas. Nat Rev Cancer. 2016;16(6):345-358.

[2]

Obrador E, Salvador R, López-Blanch R, et al. Melanoma in the liver: oxidative stress and the mechanisms of metastatic cell survival. Semin Cancer Biol. 2021;71:109-121.

[3]

van Zeijl MCT, de Wreede LC, van den Eertwegh AJM, et al. Survival outcomes of patients with advanced melanoma from 2013 to 2017: results of a nationwide population-based registry. Eur J Cancer. 2021;144:242-251.

[4]

Conway JW, Rawson RV, Lo S, et al. Unveiling the tumor immune microenvironment of organ-specific melanoma metastatic sites. J Immunother Cancer. 2022;10(9):e004884.

[5]

Lee JC, Green MD, Huppert LA, et al. The liver-immunity nexus and cancer immunotherapy. Clin Cancer Res. 2022;28(1):5-12.

[6]

Tumeh PC, Hellmann MD, Hamid O, et al. Liver metastasis and treatment outcome with anti-PD-1 monoclonal antibody in patients with melanoma and NSCLC. Cancer Immunol Res. 2017;5(5):417-424.

[7]

Yu J, Green MD, Li S, et al. Liver metastasis restrains immunotherapy efficacy via macrophage-mediated T cell elimination. Nat Med. 2021;27(1):152-164.

[8]

Gassmann P, Haier J. The tumor cell-host organ interface in the early onset of metastatic organ colonisation. Clin Exp Metastasis. 2008;25(2):171-181.

[9]

Brodt P. Role of the microenvironment in liver metastasis: from pre-to prometastatic niches. Clin Cancer Res. 2016;22(24):5971-5982.

[10]

Liu Y, Cao X. Characteristics and significance of the pre-metastatic niche. Cancer Cell. 2016;30(5):668-681.

[11]

Peinado H, Zhang H, Matei IR, et al. Pre-metastatic niches: organ-specific homes for metastases. Nat Rev Cancer. 2017;17(5):302-317.

[12]

Agarwal S, Behring M, Kim HG, et al. TRIP13 promotes metastasis of colorectal cancer regardless of p53 and microsatellite instability status. Molecular Oncology. 2020;14(12):3007-3029.

[13]

Wang Y, Mou Q, Zhu Z, et al. MALAT1 promotes liver fibrosis by sponging miR 181a and activating TLR4 NF κB signaling. Int J Mol Med. 2021;48(6):215.

[14]

Zhang X, Bustos MA, Gross R, et al. Interleukin enhancer-binding factor 2 promotes cell proliferation and DNA damage response in metastatic melanoma. Clin Transl Med. 2021;11(10):e608.

[15]

Wu L, Yan J, Bai Y, et al. An invasive zone in human liver cancer identified by Stereo-seq promotes hepatocyte-tumor cell crosstalk, local immunosuppression and tumor progression. Cell Res. 2023;33(8):585-603.

[16]

Ibrahim NS, Lazaris A, Rada M, et al. Angiopoietin1 deficiency in hepatocytes affects the growth of colorectal cancer liver metastases (CRCLM). Cancers. 2019;12(1):35.

[17]

van Hijfte L, Geurts M, Vallentgoed WR, et al. Alternative normalization and analysis pipeline to address systematic bias in NanoString GeoMx Digital Spatial Profiling data. iScience. 2023;26(1):105760.

[18]

Kim J, Mori T, Chen SL, et al. Chemokine receptor CXCR4 expression in patients with melanoma and colorectal cancer liver metastases and the association with disease outcome. Ann Surg. 2006;244(1):113-120.

[19]

D’Alterio C, Buoncervello M, Ieranò C, et al. Targeting CXCR4 potentiates anti-PD-1 efficacy modifying the tumor microenvironment and inhibiting neoplastic PD-1. J Exp Clin Cancer Res. 2019;38(1):432.

[20]

Saxena R, Wang Y, Mier JW. CXCR4 inhibition modulates the tumor microenvironment and retards the growth of B16-OVA melanoma and Renca tumors. Melanoma Res. 2020;30(1):14-25.

[21]

Fukuda Y, Kim SH, Bustos MA, et al. Inhibition of microsomal prostaglandin E2 synthase reduces collagen deposition in melanoma tumors and may improve immunotherapy efficacy by reducing t-cell exhaustion. Cancer Res Commun. 2023;3(7):1397-1408.

[22]

Rossi S, Cordella M, Tabolacci C, et al. TNF-alpha and metalloproteases as key players in melanoma cells aggressiveness. J Exp Clin Cancer Res. 2018;37(1):326.

[23]

Bertrand F, Montfort A, Marcheteau E, et al. TNFα blockade overcomes resistance to anti-PD-1 in experimental melanoma. Nat Commun. 2017;8(1):2256.

[24]

Montfort A, Filleron T, Virazels M, et al. Combining nivolumab and ipilimumab with infliximab or certolizumab in patients with advanced melanoma: first results of a phase Ib clinical trial. Clin Cancer Res. 2021;27(4):1037-1047.

[25]

Iida Y, Ciechanover A, Marzese DM, et al. Epigenetic regulation of KPC1 ubiquitin ligase affects the NF-κB pathway in melanoma. Clin Cancer Res. 2017;23(16):4831-4842.

[26]

Zhao R, Liu J, Li Z, Recent advances in CXCL12/CXCR4 antagonists and nano-based drug delivery systems for cancer therapy. Pharmaceutics. 2022;14(8):1541.

[27]

Jiang R, Tang J, Zhang X, et al. CCN1 promotes inflammation by inducing IL-6 production via α6β1/PI3K/Akt/NF-κB pathway in autoimmune hepatitis. Front Immunol. 2022;13:810671.

[28]

Salloum S, Holmes JA, Jindal R, et al. Exposure to human immunodeficiency virus/hepatitis C virus in hepatic and stellate cell lines reveals cooperative profibrotic transcriptional activation between viruses and cell types. Hepatology (Baltimore, Md). 2016;64(6):1951-1968.

[29]

Tian Y, Li H, Qiu T, et al. Loss of PTEN induces lung fibrosis via alveolar epithelial cell senescence depending on NF-κB activation. Aging Cell. 2019;18(1):e12858.

[30]

Lee SM, Koh DH, Jun DW, et al. Auranofin attenuates hepatic steatosis and fibrosis in nonalcoholic fatty liver disease via NRF2 and NF-κB signaling pathways. Clin Mol Hepatol. 2022;28(4):827-840.

[31]

Lin X, Wei Y, Li Y, et al. Tormentic acid ameliorates hepatic fibrosis in vivo by inhibiting glycerophospholipids metabolism and PI3K/Akt/mTOR and NF-κB pathways: based on transcriptomics and metabolomics. Front Pharmacol. 2022;13:801982.

[32]

Gao H, Zhong Y, Zhou L, et al. Kindlin-2 inhibits TNF/NF-κB-caspase 8 pathway in hepatocytes to maintain liver development and function. eLife. 2023;12:e81792.

[33]

Horn SR, Stoltzfus KC, Lehrer EJ, et al. Epidemiology of liver metastases. Cancer Epidemiol. 2020;67:101760.

[34]

Ieranò C, D’Alterio C, Giarra S, et al. CXCL12 loaded-dermal filler captures CXCR4 expressing melanoma circulating tumor cells. Cell Death Dis. 2019;10(8):562.

[35]

Seubert B, Grünwald B, Kobuch J, et al. Tissue inhibitor of metalloproteinases (TIMP)-1 creates a premetastatic niche in the liver through SDF-1/CXCR4-dependent neutrophil recruitment in mice. Hepatology. 2015;61(1):238-248.

[36]

Barbero S, Bonavia R, Bajetto A, et al. Stromal cell-derived factor 1alpha stimulates human glioblastoma cell growth through the activation of both extracellular signal-regulated kinases 1/2 and Akt. Cancer Res. 2003;63(8):1969-1974.

[37]

Shi Y, Riese DJ 2nd, Shen J. The role of the CXCL12/CXCR4/CXCR7 chemokine axis in cancer. Front Pharmacol. 2020;11:574667.

[38]

Peng DH, Rodriguez BL, Diao L, et al. Collagen promotes anti-PD-1/PD-L1 resistance in cancer through LAIR1-dependent CD8(+) T cell exhaustion. Nat Commun. 2020;11(1):4520.

[39]

Galon J, Bruni D. Approaches to treat immune hot, altered and cold tumours with combination immunotherapies. Nat Rev Drug Discov. 2019;18(3):197-218.

[40]

Flies DB, Langermann S, Jensen C, et al. Regulation of tumor immunity and immunotherapy by the tumor collagen extracellular matrix. Front Immunol. 2023;14:1199513.

[41]

Landsberg J, Kohlmeyer J, Renn M, et al. Melanomas resist T-cell therapy through inflammation-induced reversible dedifferentiation. Nature. 2012;490(7420):412-416.

[42]

Donia M, Andersen R, Kjeldsen JW, et al. Aberrant expression of MHC class II in melanoma attracts inflammatory tumor-specific CD4+ T-cells, which dampen CD8+ T-cell antitumor reactivity. Cancer Res. 2015;75(18):3747-3759.

[43]

Lim SO, Li CW, Xia W, et al. Deubiquitination and Stabilization of PD-L1 by CSN5. Cancer Cell. 2016;30(6):925-939.

[44]

Tumeh PC, Harview CL, Yearley JH, et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature. 2014;515(7528):568-571.

[45]

In GK, Ribeiro JR, Yin J, et al. Multi-omic profiling reveals discrepant immunogenic properties and a unique tumor microenvironment among melanoma brain metastases. NPJ Precis Oncol. 2023;7(1):120.

[46]

Furuhashi S, Bustos MA, Mizuno S, et al. Spatial profiling of cancer-associated fibroblasts of sporadic early onset colon cancer microenvironment. NPJ Precis Oncol. 2023;7(1):118.

[47]

Murakami T, Shoji Y, Nishi T, et al. Regulation of MRE11A by UBQLN4 leads to cisplatin resistance in patients with esophageal squamous cell carcinoma. Mol Oncol. 2021;15(4):1069-1087.

[48]

Bankhead P, Loughrey MB, Fernández JA, et al. QuPath: Open source software for digital pathology image analysis. Sci Rep. 2017;7(1):16878.

[49]

Shoji Y, Yokoe T, Kobayashi Y, et al. UBQLN4 promotes STING proteasomal degradation during cisplatin-induced DNA damage in triple-negative breast cancer. Clin Transl Med. 2022;12(7):e985.

RIGHTS & PERMISSIONS

2024 The Author(s). Clinical and Translational Medicine published by John Wiley & Sons Australia, Ltd on behalf of Shanghai Institute of Clinical Bioinformatics.

AI Summary AI Mindmap
PDF

118

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/