Comprehensive review and updated analysis of DNA methylation in hepatocellular carcinoma: From basic research to clinical application

Lin Su , Jiawen Bu , Jiahui Yu , Mila Jin , Guanliang Meng , Xudong Zhu

Clinical and Translational Medicine ›› 2024, Vol. 14 ›› Issue (11) : e70066

PDF
Clinical and Translational Medicine ›› 2024, Vol. 14 ›› Issue (11) : e70066 DOI: 10.1002/ctm2.70066
REVIEW

Comprehensive review and updated analysis of DNA methylation in hepatocellular carcinoma: From basic research to clinical application

Author information +
History +
PDF

Abstract

•A comprehensive summary of various aspects of DNA methylation, such as its mechanism, detection methods and biomarkers aiding in diagnosis and treatment.

•The role of DNA methylation in regulating hepatocellular carcinoma’s (HCC) malignant progression and sorafenib resistance, alongside elaborating therapeutic effects of DNA methyltransferase inhibitors.

•Deep research on DNA methylation is critical for discovering novel tumour-specific inhibitors for HCC.

Keywords

DNA methylation / DNA methyltransferase / hepatocellular carcinoma / inhibitors / malignant progression / sorafenib resistance

Cite this article

Download citation ▾
Lin Su,Jiawen Bu,Jiahui Yu,Mila Jin,Guanliang Meng,Xudong Zhu. Comprehensive review and updated analysis of DNA methylation in hepatocellular carcinoma: From basic research to clinical application. Clinical and Translational Medicine, 2024, 14(11): e70066 DOI:10.1002/ctm2.70066

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Llovet JM, Zucman-Rossi J, Pikarsky E, et al. Hepatocellular carcinoma. Nat Rev Dis Primers. 2016;2:16018.

[2]

Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. CA Cancer J Clin. 2023;73(1):17-48.

[3]

Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65(2):87-108.

[4]

Xu XF, Xing H, Han J, et al. Risk factors, patterns, and outcomes of late recurrence after liver resection for hepatocellular carcinoma: a multicenter study from China. JAMA Surg. 2019;154(3):209-217.

[5]

Wallace MC, Preen D, Jeffrey GP, Adams LA. The evolving epidemiology of hepatocellular carcinoma: a global perspective. Expert Rev Gastroenterol Hepatol. 2015;9(6):765-779.

[6]

Pinero F, Dirchwolf M, Pessoa MG. Biomarkers in hepatocellular carcinoma: diagnosis, prognosis and treatment response assessment. Cells. 2020;9(6):1370.

[7]

Hernandez-Meza G, von Felden J, Gonzalez-Kozlova EE, et al. DNA methylation profiling of human hepatocarcinogenesis. Hepatology. 2021;74(1):183-199.

[8]

Nepal C, Andersen JB. Alternative promoters in CpG depleted regions are prevalently associated with epigenetic misregulation of liver cancer transcriptomes. Nat Commun. 2023;14(1):2712.

[9]

Li Y, Cai Y, Chen H, Mao L. Clinical significance and association of GSTP1 hypermethylation with hepatocellular carcinoma: a meta-analysis. J Cancer Res Ther. 2018;14(suppl):S486-S489.

[10]

Boyault S, Rickman DS, de Reynies A, et al. Transcriptome classification of HCC is related to gene alterations and to new therapeutic targets. Hepatology. 2007;45(1):42-52.

[11]

Xu P, Hu G, Luo C, Liang Z. DNA methyltransferase inhibitors: an updated patent review (2012-2015). Expert Opin Ther Pat. 2016;26(9):1017-1030.

[12]

Tischoff I, Tannapfe A. DNA methylation in hepatocellular carcinoma. World J Gastroenterol. 2008;14(11):1741-1748.

[13]

Kawano H, Saeki H, Kitao H, et al. Chromosomal instability associated with global DNA hypomethylation is associated with the initiation and progression of esophageal squamous cell carcinoma. Ann Surg Oncol. 2014;21(4):S696-S702.

[14]

Vanyushin BF, Tkacheva SG, Belozersky AN. Rare bases in animal DNA. Nature. 1970;225(5236):948-949.

[15]

Singal R, Wang SZ, Sargent T, Zhu SZ, Ginder GD. Methylation of promoter proximal-transcribed sequences of an embryonic globin gene inhibits transcription in primary erythroid cells and promotes formation of a cell type-specific methyl cytosine binding complex. J Biol Chem. 2002;277(3):1897-1905.

[16]

Gardiner-Garden M, Frommer M. CpG islands in vertebrate genomes. J Mol Biol. 1987;196(2):261-282.

[17]

Smiraglia DJ, Rush LJ, Fruhwald MC, et al. Excessive CpG island hypermethylation in cancer cell lines versus primary human malignancies. Hum Mol Genet. 2001;10(13):1413-1419.

[18]

Nabilsi NH, Broaddus RR, Loose DS. DNA methylation inhibits p53-mediated survivin repression. Oncogene. 2009;28(19):2046-2050.

[19]

Okano M, Bell DW, Haber DA, Li E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell. 1999;99(3):247-257.

[20]

Ahuja N, Sharma AR, Baylin SB. Epigenetic therapeutics: a new weapon in the war against cancer. Annu Rev Med. 2016;67:73-89.

[21]

Zhu J. DNA methylation and hepatocellular carcinoma. J Hepatobiliary Pancreat Surg. 2006;13(4):265-273.

[22]

Fuke C, Shimabukuro M, Petronis A, et al. Age related changes in 5-methylcytosine content in human peripheral leukocytes and placentas: an HPLC-based study. Ann Hum Genet. 2004;68(pt 3):196-204.

[23]

Wang T, Dang N, Tang G, et al. Integrating bulk and single-cell RNA sequencing reveals cellular heterogeneity and immune infiltration in hepatocellular carcinoma. Mol Oncol. 2022;16(11):2195-2213.

[24]

Zhang Q, Lou Y, Yang J, et al. Integrated multiomic analysis reveals comprehensive tumour heterogeneity and novel immunophenotypic classification in hepatocellular carcinomas. Gut. 2019;68(11):2019-2031.

[25]

Hlady RA, Zhou D, Puszyk W, Roberts LR, Liu C, Robertson KD. Initiation of aberrant DNA methylation patterns and heterogeneity in precancerous lesions of human hepatocellular cancer. Epigenetics. 2017;12(3):215-225.

[26]

Charidemou E, Koufaris C, Louca M, Kirmizis A, Rubio-Tomas T. Histone methylation in pre-cancerous liver diseases and hepatocellular carcinoma: recent overview. Clin Transl Oncol. 2023;25(6):1594-1605.

[27]

Chang S, Yim S, Park H. The cancer driver genes IDH1/2, JARID1C/KDM5C, and UTX/KDM6A: crosstalk between histone demethylation and hypoxic reprogramming in cancer metabolism. Exp Mol Med. 2019;51(6):1-17.

[28]

Yu L, Ji T, Liao W, et al. H4-methylation regulators mediated epitranscriptome patterns and tumor microenvironment infiltration characterization in hepatocellular carcinoma. Clin Epigenetics. 2023;15(1):43.

[29]

Meunier L, Hirsch TZ, Caruso S, et al. DNA methylation signatures reveal the diversity of processes remodeling hepatocellular carcinoma methylomes. Hepatology. 2021;74(2):816-834.

[30]

Kitchen MO, Bryan RT, Emes RD, et al. HumanMethylation450K array-identified biomarkers predict tumour recurrence/progression at initial diagnosis of high-risk non-muscle invasive bladder cancer. Biomark Cancer. 2018;10:1179299X17751920.

[31]

Um SW, Kim Y, Lee BB, et al. Genome-wide analysis of DNA methylation in bronchial washings. Clin Epigenetics. 2018;10:65.

[32]

Reinhold WC, Varma S, Sunshine M, et al. The NCI-60 methylome and its integration into cellminer. Cancer Res. 2017;77(3):601-612.

[33]

Christiansen SN, Andersen JD, Kampmann ML, et al. Reproducibility of the Infinium methylationEPIC BeadChip assay using low DNA amounts. Epigenetics. 2022;17(12):1636-1645.

[34]

Kaur D, Lee SM, Goldberg D, et al. Comprehensive evaluation of the Infinium Human MethylationEPIC v2 BeadChip. Epigenetics Commun. 2023;3(1):6.

[35]

Cheung K, Burgers MJ, Young DA, Cockell S, Reynard LN. Correlation of Infinium HumanMethylation450K and MethylationEPIC BeadChip arrays in cartilage. Epigenetics. 2020;15(6-7):594-603.

[36]

Smallwood SA, Lee HJ, Angermueller C, et al. Single-cell genome-wide bisulfite sequencing for assessing epigenetic heterogeneity. Nat Methods. 2014;11(8):817-820.

[37]

Galvao A, Kelsey G. Profiling DNA methylation genome-wide in single cells. Methods Mol Biol. 2021;2214:221-240.

[38]

Zhu P, Guo H, Ren Y, et al. Single-cell DNA methylome sequencing of human preimplantation embryos. Nat Genet. 2018;50(1):12-19.

[39]

Deng Z, Ji Y, Han B, et al. Early detection of hepatocellular carcinoma via no end-repair enzymatic methylation sequencing of cell-free DNA and pre-trained neural network. Genome Med. 2023;15(1):93.

[40]

Mai L, Wen Z, Zhang Y, et al. Shortcut barcoding and early pooling for scalable multiplex single-cell reduced-representation CpG methylation sequencing at single nucleotide resolution. Nucleic Acids Res. 2023;51(21):e108.

[41]

Yu M, Carter KT, Makar KW, et al. MethyLight droplet digital PCR for detection and absolute quantification of infrequently methylated alleles. Epigenetics. 2015;10(9):803-809.

[42]

Lim AM, Candiloro IL, Wong N, et al. Quantitative methodology is critical for assessing DNA methylation and impacts on correlation with patient outcome. Clin Epigenetics. 2014;6(1):22.

[43]

Liu A, Wu Q, Peng D, et al. A novel strategy for the diagnosis, prognosis, treatment, and chemoresistance of hepatocellular carcinoma: DNA methylation. Med Res Rev. 2020;40(5):1973-2018.

[44]

Neri F, Incarnato D, Krepelova A, Parlato C, Oliviero S. Methylation-assisted bisulfite sequencing to simultaneously map 5fC and 5caC on a genome-wide scale for DNA demethylation analysis. Nat Protoc. 2016;11(7):1191-1205.

[45]

Sun Z, Terragni J, Zhu Z, Zheng Y, Pradhan S. Aba-Seq: high-resolution enzymatic mapping of genomic 5-hydroxymethylcytosine. Methods Mol Biol. 2021;2272:13-27.

[46]

Goltz D, Holmes EE, Gevensleben H, et al. CXCL12 promoter methylation and PD-L1 expression as prognostic biomarkers in prostate cancer patients. Oncotarget. 2016;7(33):53309-53320.

[47]

Song X, Huang F, Liu J, et al. Genome-wide DNA methylomes from discrete developmental stages reveal the predominance of non-CpG methylation in Tribolium castaneum. DNA Res. 2017;24(5):445-457.

[48]

Kim KD, El Baidouri M, Jackson SA. Accessing epigenetic variation in the plant methylome. Brief Funct Genomics. 2014;13(4):318-327.

[49]

Pan Y, Liu G, Zhou F, Su B, Li Y. DNA methylation profiles in cancer diagnosis and therapeutics. Clin Exp Med. 2018;18(1):1-14.

[50]

Yu Q, Cao S, Tang H, Li J, Guo W, Zhang S. Clinical significance of aberrant DEUP1 promoter methylation in hepatocellular carcinoma. Oncol Lett. 2019;18(2):1356-1364.

[51]

Yokomichi N, Nishida N, Umeda Y, et al. Heterogeneity of epigenetic and epithelial mesenchymal transition marks in hepatocellular carcinoma with keratin 19 proficiency. Liver Cancer. 2019;8(4):239-254.

[52]

Hou JY, Wu HY, He RQ, Lin P, Dang YW, Chen G. Clinical and prognostic value of chaperonin containing T-complex 1 subunit 3 in hepatocellular carcinoma: a study based on microarray and RNA-sequencing with 4272 cases. Pathol Res Pract. 2019;215(1):177-194.

[53]

Chen J, Chen Z, Huang Z, Yu H, Li Y, Huang W. Formiminotransferase cyclodeaminase suppresses hepatocellular carcinoma by modulating cell apoptosis, DNA damage, and phosphatidylinositol 3-kinases (PI3K)/Akt signaling pathway. Med Sci Monit. 2019;25:4474-4484.

[54]

Fan X, Jin S, Li Y, et al. Genetic and epigenetic regulation of E-cadherin signaling in human hepatocellular carcinoma. Cancer Manag Res. 2019;11:8947-8963.

[55]

Zhang Y, Tang B, Song J, et al. Lnc-PDZD7 contributes to stemness properties and chemosensitivity in hepatocellular carcinoma through EZH2-mediated ATOH8 transcriptional repression. J Exp Clin Cancer Res. 2019;38(1):92.

[56]

Zhang C, Ge S, Wang J, et al. Epigenomic profiling of DNA methylation for hepatocellular carcinoma diagnosis and prognosis prediction. J Gastroenterol Hepatol. 2019;34(10):1869-1877.

[57]

Tao X, Zuo Q, Ruan H, et al. Argininosuccinate synthase 1 suppresses cancer cell invasion by inhibiting STAT3 pathway in hepatocellular carcinoma. Acta Biochim Biophys Sin. 2019;51(3):263-276.

[58]

Subat S, Mogushi K, Yasen M, Kohda T, Ishikawa Y, Tanaka H. Identification of genes and pathways, including the CXCL2 axis, altered by DNA methylation in hepatocellular carcinoma. J Cancer Res Clin Oncol. 2019;145(3):675-684.

[59]

Lu S, Lu H, Jin R, Mo Z. Promoter methylation and H3K27 deacetylation regulate the transcription of VIPR1 in hepatocellular carcinoma. Biochem Biophys Res Commun. 2019;509(1):301-305.

[60]

Dang S, Zhou J, Chen Y, et al. Dynamic expression of ZNF382 and its tumor-suppressor role in hepatitis B virus-related hepatocellular carcinogenesis. Oncogene. 2019;38(24):4804-4819.

[61]

Zhou Y, Wang XB, Qiu XP, Shuai Z, Wang C, Zheng F. CDKN2A promoter methylation and hepatocellular carcinoma risk: a meta-analysis. Clin Res Hepatol Gastroenterol. 2018;42(6):529-541.

[62]

Chen G, Fan X, Li Y, et al. Promoter aberrant methylation status of ADRA1A is associated with hepatocellular carcinoma. Epigenetics. 2020;15(6-7):684-701.

[63]

Zhao J, Li L, Guo L, et al. Nano-gold PCR in detection of TERT methylation and its correlation with hepatitis B-related hepatocellular carcinoma. J Biomed Nanotechnol. 2021;17(7):1284-1292.

[64]

Yao Z, Di Poto C, Mavodza G, Oliver E, Ressom HW, Sherif ZA. DNA methylation activates TP73 expression in hepatocellular carcinoma and gastrointestinal cancer. Sci Rep. 2019;9(1):19367.

[65]

Xing W, Li Y, Chen J, et al. Association of APC expression with its promoter methylation status and the prognosis of hepatocellular carcinoma. Asian Pac J Cancer Prev. 2023;24(11):3851-3857.

[66]

Fu S, Deger T, Boers RG, et al. Hypermethylation of DNA methylation markers in non-cirrhotic hepatocellular carcinoma. Cancers. 2023;15(19):4784.

[67]

Shih YL, Kuo CC, Yan MD, Lin YW, Hsieh CB, Hsieh TY. Quantitative methylation analysis reveals distinct association between PAX6 methylation and clinical characteristics with different viral infections in hepatocellular carcinoma. Clin Epigenetics. 2016;8:41.

[68]

Shitani M, Sasaki S, Akutsu N, et al. Genome-wide analysis of DNA methylation identifies novel cancer-related genes in hepatocellular carcinoma. Tumour Biol. 2012;33(5):1307-1317.

[69]

Qiu X, Hu B, Huang Y, Deng Y, Wang X, Zheng F. Hypermethylation of ACP1, BMP4, and TSPYL5 in hepatocellular carcinoma and their potential clinical significance. Dig Dis Sci. 2016;61(1):149-157.

[70]

Zhu Q, Yang H, Cheng P, Han Q. Bioinformatic analysis of the prognostic value of the lncRNAs encoding snoRNAs in hepatocellular carcinoma. Biofactors. 2019;45(2):244-252.

[71]

Yu B, Ding Y, Liao X, Wang C, Wang B, Chen X. Overexpression of TONSL might be an independent unfavorable prognostic indicator in hepatocellular carcinoma. Pathol Res Pract. 2019;215(5):939-945.

[72]

Xiong L, Wu F, Wu Q, et al. Aberrant enhancer hypomethylation contributes to hepatic carcinogenesis through global transcriptional reprogramming. Nat Commun. 2019;10(1):335.

[73]

Sulaiman SA, Abu N, Ab-Mutalib NS, Low TY, Jamal R. Signatures of gene expression, DNA methylation and microRNAs of hepatocellular carcinoma with vascular invasion. Future Oncol. 2019;15(22):2603-2617.

[74]

Ma Z, Liu Y, Hao Z, Hua X, Li W. DNA hypermethylation of aurora kinase A in hepatitis C virus-positive hepatocellular carcinoma. Mol Med Rep. 2019;20(3):2519-2532.

[75]

Li Z, Li Z, Wang L, Long C, Zheng Z, Zhuang X. ZCCHC13-mediated induction of human liver cancer is associated with the modulation of DNA methylation and the AKT/ERK signaling pathway. J Transl Med. 2019;17(1):108.

[76]

Guerra MT, Florentino RM, Franca A, et al. Expression of the type 3 InsP3 receptor is a final common event in the development of hepatocellular carcinoma. Gut. 2019;68(9):1676-1687.

[77]

Dreval K, Tryndyak V, de Conti A, Beland FA, Pogribny IP. Gene expression and DNA methylation alterations during non-alcoholic steatohepatitis-associated liver carcinogenesis. Front Genet. 2019;10:486.

[78]

Cao H, Chu X, Wang Z, et al. High FOXK1 expression correlates with poor outcomes in hepatocellular carcinoma and regulates stemness of hepatocellular carcinoma cells. Life Sci. 2019;228:128-134.

[79]

Cai C, Wang W, Tu Z. Aberrantly DNA methylated-differentially expressed genes and pathways in hepatocellular carcinoma. J Cancer. 2019;10(2):355-366.

[80]

Anwar SL, Hasemeier B, Schipper E, Vogel A, Kreipe H, Lehmann U. LINE-1 hypomethylation in human hepatocellular carcinomas correlates with shorter overall survival and CIMP phenotype. PLoS One. 2019;14(5):e0216374.

[81]

Abi Zamer B, Rah B, Jayakumar MN, Abumustafa W, Hamad M, Muhammad JS. DNA methylation-mediated epigenetic regulation of oncogenic RPS2 as a novel therapeutic target and biomarker in hepatocellular carcinoma. Biochem Biophys Res Commun. 2024;696:149453.

[82]

Li C, Jia Y, Li N, Zhou Q, Liu R, Wang Q. DNA methylation-mediated high expression of CCDC50 correlates with poor prognosis and hepatocellular carcinoma progression. Aging. 2023;15(15):7424-7439.

[83]

Fang Y, Tang W, Zhao D, et al. Immunological function and prognostic value of lymphoid-specific helicase in liver hepatocellular carcinoma. Cancer Biomark. 2023;38(2):225-239.

[84]

Zhang H, Dong P, Fan H, et al. Gene body hypomethylation of pyroptosis-related genes NLRP7, NLRP2, and NLRP3 facilitate non-invasive surveillance of hepatocellular carcinoma. Funct Integr Genomics. 2023;23(2):198.

[85]

Johnson P, Zhou Q, Dao DY, Lo YMD. Circulating biomarkers in the diagnosis and management of hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol. 2022;19(10):670-681.

[86]

Norman JS, Li PJ, Kotwani P, Shui AM, Yao F, Mehta N. AFP-L3 and DCP strongly predict early hepatocellular carcinoma recurrence after liver transplantation. J Hepatol. 2023;79(6):1469-1477.

[87]

Force M, Park G, Chalikonda D, et al. Alpha-fetoprotein (AFP) and AFP-L3 is most useful in detection of recurrence of hepatocellular carcinoma in patients after tumor ablation and with low AFP level. Viruses. 2022;14(4):775.

[88]

Lok AS, Sterling RK, Everhart JE, et al. Des-gamma-carboxy prothrombin and alpha-fetoprotein as biomarkers for the early detection of hepatocellular carcinoma. Gastroenterology. 2010;138(2):493-502.

[89]

Pang BY, Leng Y, Wang X, Wang YQ, Jiang LH. A meta-analysis and of clinical values of 11 blood biomarkers, such as AFP, DCP, and GP73 for diagnosis of hepatocellular carcinoma. Ann Med. 2023;55(1):42-61.

[90]

Gil-Gomez A, Rojas A, Liu CH, et al. Combination of squamous cell carcinoma antigen immunocomplex and alpha-fetoprotein in mid-and long-term prediction of hepatocellular carcinoma among cirrhotic patients. World J Gastroenterol. 2021;27(48):8343-8356.

[91]

Bertino G, Neri S, Bruno CM, et al. Diagnostic and prognostic value of alpha-fetoprotein, des-gamma-carboxy prothrombin and squamous cell carcinoma antigen immunoglobulin M complexes in hepatocellular carcinoma. Minerva Med. 2011;102(5):363-371.

[92]

Han LY, Fan YC, Mu NN, et al. Aberrant DNA methylation of G-protein-coupled bile acid receptor Gpbar1 (TGR5) is a potential biomarker for hepatitis B Virus associated hepatocellular carcinoma. Int J Med Sci. 2014;11(2):164-171.

[93]

Schaeffeler E, Hellerbrand C, Nies AT, et al. DNA methylation is associated with downregulation of the organic cation transporter OCT1 (SLC22A1) in human hepatocellular carcinoma. Genome Med. 2011;3(12):82.

[94]

Zhou J, Lai PB, Tsui SK. Identification of a non-coding KLF4 transcript generated from intron retention and downregulated in human hepatocellular carcinoma. Int J Oncol. 2015;47(4):1554-1562.

[95]

Zhao NH, Qian Y, Wu CS, et al. Diagnostic value of NKG2D promoter methylation in hepatitis B virus-associated hepatocellular carcinoma. Biomark Med. 2019;13(13):1093-1105.

[96]

Tian M, Zhao B, Martin FL, et al. Gene-environment interactions between GSTs polymorphisms and targeted epigenetic alterations in hepatocellular carcinoma following organochlorine pesticides (OCPs) exposure. Environ Int. 2020;134:105313.

[97]

Pasha HF, Mohamed RH, Radwan MI. RASSF1A and SOCS1 genes methylation status as a noninvasive marker for hepatocellular carcinoma. Cancer Biomark. 2019;24(2):241-247.

[98]

Zhao ZH, Fan YC, Yang Y, Wang K. Association between Ras association domain family 1A promoter methylation and hepatocellular carcinoma: a meta-analysis. World J Gastroenterol. 2013;19(41):7189-7196.

[99]

Abou Zeid AA, El-Sayed ET, Ahdy JK, Tawfik MR. Ras association domain family 1A gene promoter methylation as a biomarker for chronic viral hepatitis C-related hepatocellular carcinoma. Cureus. 2023;15(9):e45687.

[100]

Tian MM, Fan YC, Zhao J, et al. Hepatocellular carcinoma suppressor 1 promoter hypermethylation in serum. A diagnostic and prognostic study in hepatitis B. Clin Res Hepatol Gastroenterol. 2017;41(2):171-180.

[101]

Ji XF, Fan YC, Gao S, Yang Y, Zhang JJ, Wang K. MT1M and MT1G promoter methylation as biomarkers for hepatocellular carcinoma. World J Gastroenterol. 2014;20(16):4723-4729.

[102]

Tian CH, Dai J, Zhang W, Liu Y, Yang Y. Expression of IL-17 and its gene promoter methylation status are associated with the progression of chronic hepatitis B virus infection. Medicine. 2019;98(23):e15924.

[103]

Tai BJ, Yao M, Zheng WJ, et al. Alteration of oncogenic IGF-II gene methylation status associates with hepatocyte malignant transformation. Hepatobiliary Pancreat Dis Int. 2019;18(2):158-163.

[104]

Xie GF, Xu YX, Xu F, et al. Plasma SGIP1 methylation in diagnosis and prognosis prediction in hepatocellular carcinoma. Neoplasma. 2021;68(1):62-70.

[105]

Qian Y, Wang JW, Fang Y, et al. Measurement of cyclin D2 (CCND2) gene promoter methylation in plasma and peripheral blood mononuclear cells and alpha-fetoprotein levels in patients with hepatitis B virus-associated hepatocellular carcinoma. Med Sci Monit. 2020;26:e927444.

[106]

Sun L, Zhao X, Zhang H, Li G, Li N. Relationship between STAP1 methylation in peripheral blood T cells and the clinicopathological characteristics and prognosis of patients within 5-cm diameter HCC. Minerva Gastroenterol. 2024;70(1):16-21.

[107]

Zhang Y, Wang JW, Su X, et al. F-box protein 43 promoter methylation as a novel biomarker for hepatitis B virus-associated hepatocellular carcinoma. Front Microbiol. 2023;14:1267844.

[108]

Saeki I, Suehiro Y, Yamauchi Y, et al. Methylated SEPT9 assay-based liquid biopsy as a biomarker in molecular targeted agent-treated hepatocellular carcinoma. Hepatol Int. 2023;17(5):1289-1299.

[109]

Bai Y, Xu J, Li D, et al. HepaClear, a blood-based panel combining novel methylated CpG sites and protein markers, for the detection of early-stage hepatocellular carcinoma. Clin Epigenetics. 2023;15(1):99.

[110]

Udali S, Castagna A, Corbella M, et al. Hepcidin and DNA promoter methylation in hepatocellular carcinoma. Eur J Clin Invest. 2018;48(2):e12870.

[111]

Kisiel JB, Dukek BA, VSRK R, et al. Hepatocellular carcinoma detection by plasma methylated DNA: discovery, phase I pilot, and phase II clinical validation. Hepatology. 2019;69(3):1180-1192.

[112]

Mezzacappa C, Wang Z, Lu L, Risch H, Taddei T, Yu H. Detection of hepatocellular carcinoma methylation markers in salivary DNA. Biosci Rep. 2024;44(3):BSR20232063.

[113]

Xu RH, Wei W, Krawczyk M, et al. Circulating tumour DNA methylation markers for diagnosis and prognosis of hepatocellular carcinoma. Nat Mater. 2017;16(11):1155-1161.

[114]

Wu X, Li J, Gassa A, et al. Circulating tumor DNA as an emerging liquid biopsy biomarker for early diagnosis and therapeutic monitoring in hepatocellular carcinoma. Int J Biol Sci. 2020;16(9):1551-1562.

[115]

Cai J, Chen L, Zhang Z, et al. Genome-wide mapping of 5-hydroxymethylcytosines in circulating cell-free DNA as a non-invasive approach for early detection of hepatocellular carcinoma. Gut. 2019;68(12):2195-2205.

[116]

Jiang J, Yan T, Guo F. Global DNA 5hmC and CK195hmC+ contents: a promising biomarker for predicting prognosis in small hepatocellular carcinoma. Curr Oncol. 2021;28(5):3758-3770.

[117]

Liu J, Jiang J, Mo J, et al. Global DNA 5-hydroxymethylcytosine and 5-formylcytosine contents are decreased in the early stage of hepatocellular carcinoma. Hepatology. 2019;69(1):196-208.

[118]

Angeli-Pahim I, Chambers A, Duarte S, et al. Methylated ctDNA quantification: noninvasive approach to monitoring hepatocellular carcinoma burden. J Am Coll Surg. 2024;238(4):770-778.

[119]

Zhang P, Wen X, Gu F, et al. Methylation profiling of serum DNA from hepatocellular carcinoma patients using an Infinium Human Methylation 450 BeadChip. Hepatol Int. 2013;7(3):893-900.

[120]

Holmila R, Sklias A, Muller DC, et al. Targeted deep sequencing of plasma circulating cell-free DNA reveals Vimentin and Fibulin 1 as potential epigenetic biomarkers for hepatocellular carcinoma. PLoS One. 2017;12(3):e0174265.

[121]

Ye Q, Ling S, Zheng S, Xu X. Liquid biopsy in hepatocellular carcinoma: circulating tumor cells and circulating tumor DNA. Mol Cancer. 2019;18(1):114.

[122]

Wang J, Yang L, Diao Y, et al. Circulating tumour DNA methylation in hepatocellular carcinoma diagnosis using digital droplet PCR. J Int Med Res. 2021;49(3):300060521992962.

[123]

Zhao Y, Zhao L, Jin H, et al. Plasma methylated GNB4 and Riplet as a novel dual-marker panel for the detection of hepatocellular carcinoma. Epigenetics. 2024;19(1):2299044.

[124]

Lin SY, Xia W, Kim AK, et al. Novel urine cell-free DNA methylation markers for hepatocellular carcinoma. Sci Rep. 2023;13(1):21585.

[125]

Kim SC, Kim DW, Cho EJ, et al. A circulating cell-free DNA methylation signature for the detection of hepatocellular carcinoma. Mol Cancer. 2023;22(1):164.

[126]

Zhu R, Wang X, Sun F, Zhu L, Guo W. Exploring the role of DNA methylation located in cuproptosis-related genes: implications for prognosis and immune landscape in hepatocellular carcinoma. Front Biosci (Landmark Ed). 2024;29(3):123.

[127]

Ma J, Chen Z, Liu S, et al. Prognostic effect of DNA methylation of BTG2 gene in Chinese hepatocellular carcinoma. Heliyon. 2024;10(7):e28580.

[128]

Hsiao CY, Lu CY, Su HJ, Huang KW. Plasma cell-free adenomatous polyposis coli gene promoter methylation as a prognostic biomarker for hepatocellular carcinoma. Oncology. 2024.

[129]

Luo J, Zhu WC, Chen QX, Yang CF, Huang BJ, Zhang SJ. A prognostic model based on DNA methylation-related gene expression for predicting overall survival in hepatocellular carcinoma. Front Oncol. 2023;13:1171932.

[130]

Lu CY, Hsiao CY, Peng PJ, et al. DNA methylation biomarkers as prediction tools for therapeutic response and prognosis in intermediate-stage hepatocellular carcinoma. Cancers (Basel). 2023;15(18):4465.

[131]

Yang T, Wang N, Wang F, Liu H, Shen F, Lv G. Refinement and validation of a comprehensive clinical diagnostic model (GAMAD) based on gender, age, multitarget circulating tumour DNA methylation signature and commonly used serological biomarkers for early detection of hepatocellular carcinoma: a multicentre, prospective observational study protocol. BMJ Open. 2023;13(9):e076467.

[132]

Fu S, Debes JD, Boonstra A. DNA methylation markers in the detection of hepatocellular carcinoma. Eur J Cancer. 2023;191:112960.

[133]

Cheishvili D, Wong C, Karim MM, et al. A high-throughput test enables specific detection of hepatocellular carcinoma. Nat Commun. 2023;14(1):3306.

[134]

Wen H, Ji T, Lin L, Cheng N, Zhu K, Cao L. High expression of ten eleven translocation 1 is associated with poor prognosis in hepatocellular carcinoma. Mediators Inflamm. 2023;2023:2664370.

[135]

Zheng Y, Huang Q, Ding Z, et al. Genome-wide DNA methylation analysis identifies candidate epigenetic markers and drivers of hepatocellular carcinoma. Brief Bioinform. 2018;19(1):101-108.

[136]

Bai Y, Tong W, Xie F, et al. DNA methylation biomarkers for diagnosis of primary liver cancer and distinguishing hepatocellular carcinoma from intrahepatic cholangiocarcinoma. Aging (Albany NY). 2021;13(13):17592-17606.

[137]

Villanueva A, Portela A, Sayols S, et al. DNA methylation-based prognosis and epidrivers in hepatocellular carcinoma. Hepatology. 2015;61(6):1945-1956.

[138]

Huang X, Yang C, Wang J, Sun T, Xiong H. Integrative analysis of DNA methylation and gene expression reveals distinct hepatocellular carcinoma subtypes with therapeutic implications. Aging (Albany NY). 2020;12(6):4970-4995.

[139]

Zheng YF, Lu X, Zhang XY, Guan BG. The landscape of DNA methylation in hepatocellular carcinoma. J Cell Physiol. 2019;234(3):2631-2638.

[140]

Zhang C, Li J, Huang T, et al. Meta-analysis of DNA methylation biomarkers in hepatocellular carcinoma. Oncotarget. 2016;7(49):81255-81267.

[141]

Cheng J, Wei D, Ji Y, et al. Integrative analysis of DNA methylation and gene expression reveals hepatocellular carcinoma-specific diagnostic biomarkers. Genome Med. 2018;10(1):42.

[142]

Yan Q, Tang Y, He F, et al. Global analysis of DNA methylation in hepatocellular carcinoma via a whole-genome bisulfite sequencing approach. Genomics. 2021;113(6):3618-3634.

[143]

Long J, Chen P, Lin J, et al. DNA methylation-driven genes for constructing diagnostic, prognostic, and recurrence models for hepatocellular carcinoma. Theranostics. 2019;9(24):7251-7267.

[144]

Hlady RA, Zhao X, Pan X, et al. Genome-wide discovery and validation of diagnostic DNA methylation-based biomarkers for hepatocellular cancer detection in circulating cell free DNA. Theranostics. 2019;9(24):7239-7250.

[145]

Cai C, Xie X, Zhou J, Fang X, Wang F, Wang M. Identification of TAF1, SAT1, and ARHGEF9 as DNA methylation biomarkers for hepatocellular carcinoma. J Cell Physiol. 2020;235(1):611-618.

[146]

Tannapfel A, Busse C, Weinans L, et al. INK4a-ARF alterations and p53 mutations in hepatocellular carcinomas. Oncogene. 2001;20(48):7104-7109.

[147]

Liggett WH Jr, Sidransky D. Role of the p16 tumor suppressor gene in cancer. J Clin Oncol. 1998;16(3):1197-1206.

[148]

Sharpless NE, DePinho RA. The INK4A/ARF locus and its two gene products. Curr Opin Genet Dev. 1999;9(1):22-30.

[149]

Luo YD, Fang L, Yu HQ, et al. p53 haploinsufficiency and increased mTOR signalling define a subset of aggressive hepatocellular carcinoma. J Hepatol. 2021;74(1):96-108.

[150]

Hashemi M, Aftabi S, Moazeni-Roodi A, Sarani H, Wiechec E, Ghavami S. Association of CASP8 polymorphisms and cancer susceptibility: a meta-analysis. Eur J Pharmacol. 2020;881:173201.

[151]

Yu J, Ni M, Xu J, et al. Methylation profiling of twenty promoter-CpG islands of genes which may contribute to hepatocellular carcinogenesis. BMC Cancer. 2002;2:29.

[152]

McConnell BB, Vertino PM. TMS1/ASC: the cancer connection. Apoptosis. 2004;9(1):5-18.

[153]

Kapoor-Vazirani P, Kagey JD, Powell DR, Vertino PM. Role of hMOF-dependent histone H4 lysine 16 acetylation in the maintenance of TMS1/ASC gene activity. Cancer Res. 2008;68(16):6810-6821.

[154]

Kubo T, Yamamoto J, Shikauchi Y, Niwa Y, Matsubara K, Yoshikawa H. Apoptotic speck protein-like, a highly homologous protein to apoptotic speck protein in the pyrin domain, is silenced by DNA methylation and induces apoptosis in human hepatocellular carcinoma. Cancer Res. 2004;64(15):5172-5177.

[155]

Zhang C, Li H, Zhou G, et al. Transcriptional silencing of the TMS1/ASC tumour suppressor gene by an epigenetic mechanism in hepatocellular carcinoma cells. J Pathol. 2007;212(2):134-142.

[156]

Zhang L, Xu J, Zhou S, et al. Endothelial DGKG promotes tumor angiogenesis and immune evasion in hepatocellular carcinoma. J Hepatol. 2024;80(1):82-98.

[157]

Li M, Zhang X, Wang M, et al. Activation of Piezo1 contributes to matrix stiffness-induced angiogenesis in hepatocellular carcinoma. Cancer Commun (Lond). 2022;42(11):1162-1184.

[158]

Lu Y, Han G, Zhang Y, et al. M2 macrophage-secreted exosomes promote metastasis and increase vascular permeability in hepatocellular carcinoma. Cell Commun Signal. 2023;21(1):299.

[159]

Wang M, Ye Q, Mao D, Li H. Research progress in liver-regenerating microenvironment and DNA methylation in hepatocellular carcinoma: the role of traditional Chinese medicine. Med Sci Monit. 2020;26:e920310.

[160]

Ridge SM, Sullivan FJ, Glynn SA. Mesenchymal stem cells: key players in cancer progression. Mol Cancer. 2017;16(1):31.

[161]

Phillips JM, Goodman JI. Multiple genes exhibit phenobarbital-induced constitutive active/androstane receptor-mediated DNA methylation changes during liver tumorigenesis and in liver tumors. Toxicol Sci. 2009;108(2):273-289.

[162]

Quentmeier H, Eberth S, Romani J, Weich HA, Zaborski M, Drexler HG. DNA methylation regulates expression of VEGF-R2 (KDR) and VEGF-R3 (FLT4). BMC Cancer. 2012;12:19.

[163]

Sun X, Liu Y, Cheng C, Sun H, Tian L. CTHRC1 modulates cell proliferation and invasion in hepatocellular carcinoma by DNA methylation. Discov Oncol. 2024;15(1):347.

[164]

Liu C, Zhuo Y, Yang X, et al. Epigenetically associated IGF2BP3 upregulation promotes cell proliferation by regulating E2F1 expression in hepatocellular carcinoma. Sci Rep. 2024;14(1):16051.

[165]

Zhang R, Dai J, Yao F, et al. Hypomethylation-enhanced CRTC2 expression drives malignant phenotypes and primary resistance to immunotherapy in hepatocellular carcinoma. iScience. 2024;27(6):109821.

[166]

Yoo W, Kim AK, Kook HU, Noh K. Comprehensive analysis on clinical significance and therapeutic targets of LDL receptor related protein 11 (LRP11) in liver hepatocellular carcinoma. Front Pharmacol. 2024;15:1338929.

[167]

de Abreu Pereira D, Sandim V, Fernandes TFB, et al. Proteomic analysis of HCC-1954 and MCF-7 cell lines highlights crosstalk between alphav and beta1 integrins, E-cadherin and HER-2. Int J Mol Sci. 2022;23(17):10194.

[168]

Yao L, Li J, Jiang B, et al. RNF2 inhibits E-cadherin transcription to promote hepatocellular carcinoma metastasis via inducing histone mono-ubiquitination. Cell Death Dis. 2023;14(4):261.

[169]

Gan WJ, Wang JR, Zhu XL, et al. RARgamma-induced E-cadherin downregulation promotes hepatocellular carcinoma invasion and metastasis. J Exp Clin Cancer Res. 2016;35(1):164.

[170]

Huang Z, Zhou L, Duan J, et al. Oxidative stress promotes liver cancer metastasis via RNF25-mediated E-cadherin protein degradation. Adv Sci (Weinh). 2024;11(13):e2306929.

[171]

Scully OJ, Bay BH, Yip G, Yu Y. Breast cancer metastasis. Cancer Genomics Proteomics. 2012;9(5):311-320.

[172]

Kanai Y. Molecular pathological approach to cancer epigenomics and its clinical application. Pathol Int. 2024;74(4):167-186.

[173]

Kwon GY, Yoo BC, Koh KC, Cho JW, Park WS, Park CK. Promoter methylation of E-cadherin in hepatocellular carcinomas and dysplastic nodules. J Korean Med Sci. 2005;20(2):242-247.

[174]

Matsumura T, Makino R, Mitamura K. Frequent down-regulation of E-cadherin by genetic and epigenetic changes in the malignant progression of hepatocellular carcinomas. Clin Cancer Res. 2001;7(3):594-599.

[175]

Yamada S, Nomoto S, Fujii T, et al. Frequent promoter methylation of M-cadherin in hepatocellular carcinoma is associated with poor prognosis. Anticancer Res. 2007;27(4B):2269-2274.

[176]

Gu X, Fu M, Ding Y, et al. TIMP-3 expression associates with malignant behaviors and predicts favorable survival in HCC. PLoS One. 2014;9(8):e106161.

[177]

Shen B, Jiang Y, Chen YR, et al. Expression and inhibitory role of TIMP-3 in hepatocellular carcinoma. Oncol Rep. 2016;36(1):494-502.

[178]

Abdel-Hamid NM, Abass SA, Eldomany RA, Abdel-Kareem MA, Zakaria S. Dual regulating of mitochondrial fusion and Timp-3 by leflunomide and diallyl disulfide combination suppresses diethylnitrosamine-induced hepatocellular tumorigenesis in rats. Life Sci. 2022;294:120369.

[179]

Esteller M, Corn PG, Baylin SB, Herman JG. A gene hypermethylation profile of human cancer. Cancer Res. 2001;61(8):3225-3229.

[180]

Lee S, Lee HJ, Kim JH, Lee HS, Jang JJ, Kang GH. Aberrant CpG island hypermethylation along multistep hepatocarcinogenesis. Am J Pathol. 2003;163(4):1371-1378.

[181]

Li Z, Xu Y, Wang Q, Xie C, Liu Y, Tu Z. Tissue factor pathway inhibitor-2 induced hepatocellular carcinoma cell differentiation. Saudi J Biol Sci. 2017;24(1):95-102.

[182]

Xu Y, Qin X, Zhou J, et al. Tissue factor pathway inhibitor-2 inhibits the growth and invasion of hepatocellular carcinoma cells and is inactivated in human hepatocellular carcinoma. Oncol Lett. 2011;2(5):779-783.

[183]

Wen DS, Huang LC, Bu XY, et al. DNA methylation-activated full-length EMX1 facilitates metastasis through EMX1-EGFR-ERK axis in hepatocellular carcinoma. Cell Death Dis. 2023;14(11):769.

[184]

Zhou Q, Yin Y, Yu M, et al. GTPBP4 promotes hepatocellular carcinoma progression and metastasis via the PKM2 dependent glucose metabolism. Redox Biol. 2022;56:102458.

[185]

Guo S, Li F, Liang Y, et al. AIFM2 promotes hepatocellular carcinoma metastasis by enhancing mitochondrial biogenesis through activation of SIRT1/PGC-1alpha signaling. Oncogenesis. 2023;12(1):46.

[186]

Li S, Xue P, Diao X, et al. Identification and validation of functional roles for three MYC-associated genes in hepatocellular carcinoma. J Adv Res. 2023;54:133-146.

[187]

Ahn HR, Baek GO, Yoon MG, et al. Hypomethylation-mediated upregulation of the WASF2 promoter region correlates with poor clinical outcomes in hepatocellular carcinoma. J Exp Clin Cancer Res. 2022;41(1):158.

[188]

Maryam M, Idrees M. Study of promoter hypomethylation profiles of RAS oncogenes in hepatocellular carcinoma derived from hepatitis C virus genotype 3a in Pakistani population. J Med Virol. 2018;90(9):1516-1523.

[189]

Guo J, Huang M, Deng S, Wang H, Wang Z, Yan B. Highly expressed RPLP2 inhibits ferroptosis to promote hepatocellular carcinoma progression and predicts poor prognosis. Cancer Cell Int. 2023;23(1):278.

[190]

Tang W, Chen Z, Zhang W, et al. The mechanisms of sorafenib resistance in hepatocellular carcinoma: theoretical basis and therapeutic aspects. Signal Transduct Target Ther. 2020;5(1):87.

[191]

Gao R, Kalathur RKR, Coto-Llerena M, et al. YAP/TAZ and ATF4 drive resistance to Sorafenib in hepatocellular carcinoma by preventing ferroptosis. EMBO Mol Med. 2021;13(12):e14351.

[192]

Eun JW, Yoon JH, Ahn HR, et al. Cancer-associated fibroblast-derived secreted phosphoprotein 1 contributes to resistance of hepatocellular carcinoma to sorafenib and lenvatinib. Cancer Commun (Lond). 2023;43(4):455-479.

[193]

Abeni E, Salvi A, Marchina E, Traversa M, Arici B, De Petro G. Sorafenib induces variations of the DNA methylome in HA22T/VGH human hepatocellular carcinoma-derived cells. Int J Oncol. 2017;51(1):128-144.

[194]

Wang T, Qin ZY, Wen LZ, et al. Epigenetic restriction of Hippo signaling by MORC2 underlies stemness of hepatocellular carcinoma cells. Cell Death Differ. 2018;25(12):2086-2100.

[195]

Jukam D, Desplan C. Binary regulation of Hippo pathway by Merlin/NF2, Kibra, Lgl, and melted specifies and maintains postmitotic neuronal fate. Dev Cell. 2011;21(5):874-887.

[196]

Ardestani A, Maedler K. STRIPAK is a regulatory hub initiating Hippo signaling. Trends Biochem Sci. 2020;45(4):280-283.

[197]

Chen R, Xie R, Meng Z, Ma S, Guan KL. STRIPAK integrates upstream signals to initiate the Hippo kinase cascade. Nat Cell Biol. 2019;21(12):1565-1577.

[198]

Basu-Roy U, Bayin NS, Rattanakorn K, et al. Sox2 antagonizes the Hippo pathway to maintain stemness in cancer cells. Nat Commun. 2015;6:6411.

[199]

Fang S, Zheng L, Chen X, et al. MEX3A determines in vivo hepatocellular carcinoma progression and induces resistance to sorafenib in a Hippo-dependent way. Hepatol Int. 2023;17(6):1500-1518.

[200]

Zhou X, Luo J, Xie H, et al. MCM2 promotes the stemness and sorafenib resistance of hepatocellular carcinoma cells via hippo signaling. Cell Death Discov. 2022;8(1):418.

[201]

Schultheiss CS, Laggai S, Czepukojc B, et al. The long non-coding RNA H19 suppresses carcinogenesis and chemoresistance in hepatocellular carcinoma. Cell Stress. 2017;1(1):37-54.

[202]

Zhou S, Liu Y, Zhang Q, et al. Human menstrual blood-derived stem cells reverse sorafenib resistance in hepatocellular carcinoma cells through the hyperactivation of mitophagy. Stem Cell Res Ther. 2023;14(1):58.

[203]

Liu J, Liu Y, Meng L, Liu K, Ji B. Targeting the PD-L1/DNMT1 axis in acquired resistance to sorafenib in human hepatocellular carcinoma. Oncol Rep. 2017;38(2):899-907.

[204]

Mo C, You W, Rao Y, et al. Epigenetic regulation of DNA repair gene program by Hippo/YAP1-TET1 axis mediates sorafenib resistance in HCC. Cell Mol Life Sci. 2024;81(1):284.

[205]

Cheng T, Zhou C, Bian S, Sobeck K, Liu Y. Coordinated activation of DNMT3a and TET2 in cancer stem cell-like cells initiates and sustains drug resistance in hepatocellular carcinoma. Cancer Cell Int. 2024;24(1):110.

[206]

Wang W, Ding B, Lou W, Lin S. Promoter hypomethylation and miR-145-5p downregulation-mediated HDAC11 overexpression promotes sorafenib resistance and metastasis of hepatocellular carcinoma cells. Front Cell Dev Biol. 2020;8:724.

[207]

Gailhouste L, Liew LC, Yasukawa K, et al. Differentiation therapy by epigenetic reconditioning exerts antitumor effects on liver cancer cells. Mol Ther. 2018;26(7):1840-1854.

[208]

Galle E, Thienpont B, Cappuyns S, et al. DNA methylation-driven EMT is a common mechanism of resistance to various therapeutic agents in cancer. Clin Epigenetics. 2020;12(1):27.

[209]

Zhang Y, Feng J, Mi Y, et al. Epigenetic activation of cytochrome P450 1A2 sensitizes hepatocellular carcinoma cells to sorafenib. Drug Metab Dispos. 2024;52(6):555-564.

[210]

Meng J, Li S, Niu ZQ, Bao ZQ, Niu LL. The efficacy of sorafenib against hepatocellular carcinoma is enhanced by 5-aza-mediated inhibition of ID1 promoter methylation. FEBS Open Bio. 2024;14(1):127-137.

[211]

Yamamoto H, Imai K. Microsatellite instability: an update. Arch Toxicol. 2015;89(6):899-921.

[212]

Jiang M, Jia K, Wang L, et al. Alterations of DNA damage response pathway: biomarker and therapeutic strategy for cancer immunotherapy. Acta Pharm Sin B. 2021;11(10):2983-2994.

[213]

Metaxas GI, Tsiambas E, Marinopoulos S, et al. DNA mismatch repair system imbalances in breast adenocarcinoma. Cancer Diagn Progn. 2023;3(2):169-174.

[214]

Park JH, Cho SB, Lee WS, et al. Methylation pattern of DNA repair genes and microsatellite instability in hepatocelluar carcinoma. Korean J Gastroenterol. 2006;48(5):327-336.

[215]

Hou X, Shao C, Sun K, et al. Autophagy deficiency downregulates O(6)methylguanine-DNA methyltransferase and increases chemosensitivity of liver cancer cells. Aging (Albany NY). 2021;13(10):14289-14303.

[216]

Matsukura S, Soejima H, Nakagawachi T, et al. CpG methylation of MGMT and hMLH1 promoter in hepatocellular carcinoma associated with hepatitis viral infection. Br J Cancer. 2003;88(4):521-529.

[217]

Zhang YJ, Chen Y, Ahsan H, et al. Silencing of glutathione S-transferase P1 by promoter hypermethylation and its relationship to environmental chemical carcinogens in hepatocellular carcinoma. Cancer Lett. 2005;221(2):135-143.

[218]

Li H. Intercellular crosstalk of liver sinusoidal endothelial cells in liver fibrosis, cirrhosis and hepatocellular carcinoma. Dig Liver Dis. 2022;54(5):598-613.

[219]

Gu L, Zhu Y, Lee M, et al. Angiotensin II receptor inhibition ameliorates liver fibrosis and enhances hepatocellular carcinoma infiltration by effector T cells. Proc Natl Acad Sci U S A. 2023;120(19):e2300706120.

[220]

Inuzuka R, Nii M, Inai K, et al. Predictors of liver cirrhosis and hepatocellular carcinoma among perioperative survivors of the Fontan operation. Heart. 2023;109(4):276-282.

[221]

Schrader J, Gordon-Walker TT, Aucott RL, et al. Matrix stiffness modulates proliferation, chemotherapeutic response, and dormancy in hepatocellular carcinoma cells. Hepatology. 2011;53(4):1192-1205.

[222]

Keenan BP, Fong L, Kelley RK. Immunotherapy in hepatocellular carcinoma: the complex interface between inflammation, fibrosis, and the immune response. J Immunother Cancer. 2019;7(1):267.

[223]

Ebrahimi F, Hagstrom H, Sun J, et al. Familial coaggregation of MASLD with hepatocellular carcinoma and adverse liver outcomes: nationwide multigenerational cohort study. J Hepatol. 2023;79(6):1374-1384.

[224]

Mann J, Oakley F, Akiboye F, Elsharkawy A, Thorne AW, Mann DA. Regulation of myofibroblast transdifferentiation by DNA methylation and MeCP2: implications for wound healing and fibrogenesis. Cell Death Differ. 2007;14(2):275-285.

[225]

Yang JJ, Tao H, Huang C, et al. DNA methylation and MeCP2 regulation of PTCH1 expression during rats hepatic fibrosis. Cell Signal. 2013;25(5):1202-1211.

[226]

Reister S, Kordes C, Sawitza I, Haussinger D. The epigenetic regulation of stem cell factors in hepatic stellate cells. Stem Cells Dev. 2011;20(10):1687-1699.

[227]

Ogata H, Chinen T, Yoshida T, et al. Loss of SOCS3 in the liver promotes fibrosis by enhancing STAT3-mediated TGF-beta1 production. Oncogene. 2006;25(17):2520-2530.

[228]

Yang Y, Wu XQ, Li WX, et al. PSTPIP2 connects DNA methylation to macrophage polarization in CCL4-induced mouse model of hepatic fibrosis. Oncogene. 2018;37(47):6119-6135.

[229]

Oura K, Morishita A, Tani J, Masaki T. Tumor immune microenvironment and immunosuppressive therapy in hepatocellular carcinoma: a review. Int J Mol Sci. 2021;22(11):5801.

[230]

Wang Z, Wang Y, Gao P, Ding J. Immune checkpoint inhibitor resistance in hepatocellular carcinoma. Cancer Lett. 2023;555:216038.

[231]

Lu Y, Cheng Y, Yan W, Nardini C. Exploring the molecular causes of hepatitis B virus vaccination response: an approach with epigenomic and transcriptomic data. BMC Med Genomics. 2014;7:12.

[232]

Zhang Y, Petropoulos S, Liu J, et al. The signature of liver cancer in immune cells DNA methylation. Clin Epigenetics. 2018;10:8.

[233]

Jelencic V, Lenartic M, Wensveen FM, Polic B. NKG2D: a versatile player in the immune system. Immunol Lett. 2017;189:48-53.

[234]

Marinovic S, Lenartic M, Mladenic K, et al. NKG2D-mediated detection of metabolically stressed hepatocytes by innate-like T cells is essential for initiation of NASH and fibrosis. Sci Immunol. 2023;8(87):eadd1599.

[235]

Sun B, Yang D, Dai H, et al. Eradication of hepatocellular carcinoma by NKG2D-Based CAR-T cells. Cancer Immunol Res. 2019;7(11):1813-1823.

[236]

Yu L, Sun L, Liu X, et al. The imbalance between NKG2A and NKG2D expression is involved in NK cell immunosuppression and tumor progression of patients with hepatitis B virus-related hepatocellular carcinoma. Hepatol Res. 2023;53(5):417-431.

[237]

Fernandez-Sanchez A, Baragano Raneros A, Carvajal Palao R, et al. DNA demethylation and histone H3K9 acetylation determine the active transcription of the NKG2D gene in human CD8+ T and NK cells. Epigenetics. 2013;8(1):66-78.

[238]

Chen Y, Wei H, Sun R, Dong Z, Zhang J, Tian Z. Increased susceptibility to liver injury in hepatitis B virus transgenic mice involves NKG2D-ligand interaction and natural killer cells. Hepatology. 2007;46(3):706-715.

[239]

Wang Y, Cao K. KDM1A promotes immunosuppression in hepatocellular carcinoma by regulating PD-L1 through demethylating MEF2D. J Immunol Res. 2021;2021:9965099.

[240]

Zhou B, Yan J, Guo L, et al. Hepatoma cell-intrinsic TLR9 activation induces immune escape through PD-L1 upregulation in hepatocellular carcinoma. Theranostics. 2020;10(14):6530-6543.

[241]

Chen ZQ, Zuo XL, Cai J, et al. Hypoxia-associated circPRDM4 promotes immune escape via HIF-1alpha regulation of PD-L1 in hepatocellular carcinoma. Exp Hematol Oncol. 2023;12(1):17.

[242]

Rahman P, Roslin NM, Pellett FJ, et al. High resolution mapping in the major histocompatibility complex region identifies multiple independent novel loci for psoriatic arthritis. Ann Rheum Dis. 2011;70(4):690-694.

[243]

Carmel M, Michaelovsky E, Weinberger R, et al. Differential methylation of imprinting genes and MHC locus in 22q11.2 deletion syndrome-related schizophrenia spectrum disorders. World J Biol Psychiatry. 2021;22(1):46-57.

[244]

Flores-Tellez TN, Villa-Trevino S, Pina-Vazquez C. Road to stemness in hepatocellular carcinoma. World J Gastroenterol. 2017;23(37):6750-6776.

[245]

Lee TK, Guan XY, Ma S. Cancer stem cells in hepatocellular carcinoma-from origin to clinical implications. Nat Rev Gastroenterol Hepatol. 2022;19(1):26-44.

[246]

Fang X, Yan Q, Liu S, Guan XY. Cancer stem cells in hepatocellular carcinoma: intrinsic and extrinsic molecular mechanisms in stemness regulation. Int J Mol Sci. 2022;23(20):12327.

[247]

Raggi C, Factor VM, Seo D, et al. Epigenetic reprogramming modulates malignant properties of human liver cancer. Hepatology. 2014;59(6):2251-2262.

[248]

Zhao B, Wang Y, Tan X, et al. Inflammatory micro-environment contributes to stemness properties and metastatic potential of HCC via the NF-kappaB/miR-497/SALL4 axis. Mol Ther Oncolytics. 2019;15:79-90.

[249]

Liu F, Qian Y. The role of CD133 in hepatocellular carcinoma. Cancer Biol Ther. 2021;22(4):291-300.

[250]

Iv Santaliz-Ruiz LE, Xie X, Old M, Teknos TN, Pan Q. Emerging role of nanog in tumorigenesis and cancer stem cells. Int J Cancer. 2014;135(12):2741-2748.

[251]

You H, Ding W, Rountree CB. Epigenetic regulation of cancer stem cell marker CD133 by transforming growth factor-beta. Hepatology. 2010;51(5):1635-1644.

[252]

Wang XQ, Ng RK, Ming X, et al. Epigenetic regulation of pluripotent genes mediates stem cell features in human hepatocellular carcinoma and cancer cell lines. PLoS One. 2013;8(9):e72435.

[253]

Liu Q, Liu L, Zhao Y, et al. Hypoxia induces genomic DNA demethylation through the activation of HIF-1alpha and transcriptional upregulation of MAT2A in hepatoma cells. Mol Cancer Ther. 2011;10(6):1113-1123.

[254]

Li Y, Jiang F, Chen L, et al. Blockage of TGFbeta-SMAD2 by demethylation-activated miR-148a is involved in caffeic acid-induced inhibition of cancer stem cell-like properties in vitro and in vivo. FEBS Open Bio. 2015;5:466-475.

[255]

Sukowati C, Cabral LKD, Anfuso B, et al. PD-L1 downregulation and DNA methylation inhibition for molecular therapy against cancer stem cells in hepatocellular carcinoma. Int J Mol Sci. 2023;24(17):13357.

[256]

Kong R, Zhang H, Jia Y, Man Q, Liu S. Integrated analysis revealing the role of TET3-mediated MUC13 promoter hypomethylation in hepatocellular carcinogenesis. Epigenomics. 2022;14(24):1579-1591.

[257]

Mason S, Zhou FC. Editorial: genetics and epigenetics of fetal alcohol spectrum disorders. Front Genet. 2015;6:146.

[258]

Varela-Rey M, Woodhoo A, Martinez-Chantar ML, Mato JM, Lu SC. Alcohol, DNA methylation, and cancer. Alcohol Res. 2013;35(1):25-35.

[259]

Seitz HK, Bataller R, Cortez-Pinto H, et al. Alcoholic liver disease. Nat Rev Dis Primers. 2018;4(1):16.

[260]

Taniai M. Alcohol and hepatocarcinogenesis. Clin Mol Hepatol. 2020;26(4):736-741.

[261]

Chen M, Zhong W, Xu W. Alcohol and the mechanisms of liver disease. J Gastroenterol Hepatol. 2023;38(8):1233-1240.

[262]

Garcia-Martinez L, Zhang Y, Nakata Y, Chan HL, Morey L. Epigenetic mechanisms in breast cancer therapy and resistance. Nat Commun. 2021;12(1):1786.

[263]

Lu Y, Chan YT, Tan HY, et al. Epigenetic regulation of ferroptosis via ETS1/miR-23a-3p/ACSL4 axis mediates sorafenib resistance in human hepatocellular carcinoma. J Exp Clin Cancer Res. 2022;41(1):3.

[264]

Choi SW, Friso S. Interactions between folate and aging for carcinogenesis. Clin Chem Lab Med. 2005;43(10):1151-1157.

[265]

Bielawski DM, Zaher FM, Svinarich DM, Abel EL. Paternal alcohol exposure affects sperm cytosine methyltransferase messenger RNA levels. Alcohol Clin Exp Res. 2002;26(3):347-351.

[266]

Tsukamoto H, Lu SC. Current concepts in the pathogenesis of alcoholic liver injury. FASEB J. 2001;15(8):1335-1349.

[267]

Rich NE, Murphy CC, Yopp AC, Tiro J, Marrero JA, Singal AG. Sex disparities in presentation and prognosis of 1110 patients with hepatocellular carcinoma. Aliment Pharmacol Ther. 2020;52(4):701-709.

[268]

Greten TF. Gender disparity in HCC: is it the fat and not the sex. J Exp Med. 2019;216(5):1014-1015.

[269]

Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394-424.

[270]

Wang Y, Cheng J, Xu C, et al. Quantitative methylation analysis reveals gender and age differences in p16INK4a hypermethylation in hepatitis B virus-related hepatocellular carcinoma. Liver Int. 2012;32(3):420-428.

[271]

Zhou Y, Qiu XP, Li ZH, et al. Clinical significance of aberrant cyclin-dependent kinase-like 2 methylation in hepatocellular carcinoma. Gene. 2019;683:35-40.

[272]

Zhu C, Utsunomiya T, Ikemoto T, et al. Hypomethylation of long interspersed nuclear element-1 (LINE-1) is associated with poor prognosis via activation of c-MET in hepatocellular carcinoma. Ann Surg Oncol. 2014;21(4):S729-S735.

[273]

Liu JB, Zhang YX, Zhou SH, et al. CpG island methylator phenotype in plasma is associated with hepatocellular carcinoma prognosis. World J Gastroenterol. 2011;17(42):4718-4724.

[274]

Herath NI, Walsh MD, Kew MC, Young J, Leggett BA, Macdonald GA. Cadherin/catenin complex appears to be intact in hepatocellular carcinomas from Australia and South Africa. J Gastroenterol Hepatol. 2004;19(6):676-682.

[275]

Liu M, Cui LH, Li CC, Zhang L. Association of APC, GSTP1 and SOCS1 promoter methylation with the risk of hepatocellular carcinoma: a meta-analysis. Eur J Cancer Prev. 2015;24(6):470-483.

[276]

Saito Y, Kanai Y, Sakamoto M, Saito H, Ishii H, Hirohashi S. Expression of mRNA for DNA methyltransferases and methyl-CpG-binding proteins and DNA methylation status on CpG islands and pericentromeric satellite regions during human hepatocarcinogenesis. Hepatology. 2001;33(3):561-568.

[277]

Wong KK. DNMT1: a key drug target in triple-negative breast cancer. Semin Cancer Biol. 2021;72:198-213.

[278]

Fahy J, Jeltsch A, Arimondo PB. DNA methyltransferase inhibitors in cancer: a chemical and therapeutic patent overview and selected clinical studies. Expert Opin Ther Pat. 2012;22(12):1427-1442.

[279]

Poh WJ, Wee CP, Gao Z. DNA methyltransferase activity assays: advances and challenges. Theranostics. 2016;6(3):369-391.

[280]

Liao J, Yi Y, Yue X, et al. Methyltransferase 1 is required for nonhomologous end-joining repair and renders hepatocellular carcinoma resistant to radiotherapy. Hepatology. 2023;77(6):1896-1910.

[281]

Lin Q, Chen JW, Yin H, et al. DNA N6-methyladenine involvement and regulation of hepatocellular carcinoma development. Genomics. 2022;114(2):110265.

[282]

Jiang H, Cao HJ, Ma N, et al. Chromatin remodeling factor ARID2 suppresses hepatocellular carcinoma metastasis via DNMT1-Snail axis. Proc Natl Acad Sci U S A. 2020;117(9):4770-4780.

[283]

Park HJ, Yu E, Shim YH. DNA methyltransferase expression and DNA hypermethylation in human hepatocellular carcinoma. Cancer Lett. 2006;233(2):271-278.

[284]

Saito Y, Kanai Y, Nakagawa T, et al. Increased protein expression of DNA methyltransferase (DNMT) 1 is significantly correlated with the malignant potential and poor prognosis of human hepatocellular carcinomas. Int J Cancer. 2003;105(4):527-532.

[285]

Wahid B, Ali A, Rafique S, Idrees M. New insights into the epigenetics of hepatocellular carcinoma. Biomed Res Int. 2017;2017:1609575.

[286]

Dong Y, Wang A. Aberrant DNA methylation in hepatocellular carcinoma tumor suppression (review). Oncol Lett. 2014;8(3):963-968.

[287]

Han TS, Ban HS, Hur K, Cho HS. The epigenetic regulation of HCC metastasis. Int J Mol Sci. 2018;19(12):3978.

[288]

Gao X, Sheng Y, Yang J, et al. Osteopontin alters DNA methylation through up-regulating DNMT1 and sensitizes CD133+/CD44+ cancer stem cells to 5 azacytidine in hepatocellular carcinoma. J Exp Clin Cancer Res. 2018;37(1):179.

[289]

Goyal L, Muzumdar MD, Zhu AX. Targeting the HGF/c-MET pathway in hepatocellular carcinoma. Clin Cancer Res. 2013;19(9):2310-2318.

[290]

Yu J, Chen GG, Lai PBS. Targeting hepatocyte growth factor/c-mesenchymal-epithelial transition factor axis in hepatocellular carcinoma: rationale and therapeutic strategies. Med Res Rev. 2021;41(1):507-524.

[291]

Filliol A, Saito Y, Nair A, et al. Opposing roles of hepatic stellate cell subpopulations in hepatocarcinogenesis. Nature. 2022;610(7931):356-365.

[292]

Ogunwobi OO, Puszyk W, Dong HJ, Liu C. Epigenetic upregulation of HGF and c-Met drives metastasis in hepatocellular carcinoma. PLoS One. 2013;8(5):e63765.

[293]

Ma XL, Nie YY, Xie SH, et al. ASAP2 interrupts c-MET-CIN85 interaction to sustain HGF/c-MET-induced malignant potentials in hepatocellular carcinoma. Exp Hematol Oncol. 2023;12(1):38.

[294]

Zhang T, Wang Y, Xie M, et al. HGF-mediated elevation of ETV1 facilitates hepatocellular carcinoma metastasis through upregulating PTK2 and c-MET. J Exp Clin Cancer Res. 2022;41(1):275.

[295]

Xie CR, Sun H, Wang FQ, et al. Integrated analysis of gene expression and DNA methylation changes induced by hepatocyte growth factor in human hepatocytes. Mol Med Rep. 2015;12(3):4250-4258.

[296]

Wu WS. The signaling mechanism of ROS in tumor progression. Cancer Metastasis Rev. 2006;25(4):695-705.

[297]

Zhan X, Wu R, Kong XH, et al. Elevated neutrophil extracellular traps by HBV-mediated S100A9-TLR4/RAGE-ROS cascade facilitate the growth and metastasis of hepatocellular carcinoma. Cancer Commun (Lond). 2023;43(2):225-245.

[298]

Li B, Cao Y, Meng G, et al. Targeting glutaminase 1 attenuates stemness properties in hepatocellular carcinoma by increasing reactive oxygen species and suppressing Wnt/beta-catenin pathway. EBioMedicine. 2019;39:239-254.

[299]

Lim SO, Gu JM, Kim MS, et al. Epigenetic changes induced by reactive oxygen species in hepatocellular carcinoma: methylation of the E-cadherin promoter. Gastroenterology. 2008;135(6):2128-2140, 2140 e1-8.

[300]

Zhang Y, Lu C, Cui H. Long non-coding RNA SNHG22 facilitates hepatocellular carcinoma tumorigenesis and angiogenesis via DNA methylation of microRNA miR-16-5p. Bioengineered. 2021;12(1):7446-7458.

[301]

Chen M, Fang Y, Liang M, et al. The activation of mTOR signalling modulates DNA methylation by enhancing DNMT1 translation in hepatocellular carcinoma. J Transl Med. 2023;21(1):276.

[302]

Oh BK, Kim H, Park HJ, et al. DNA methyltransferase expression and DNA methylation in human hepatocellular carcinoma and their clinicopathological correlation. Int J Mol Med. 2007;20(1):65-73.

[303]

Lee MH, Na H, Na TY, Shin YK, Seong JK, Lee MO. Epigenetic control of metastasis-associated protein 1 gene expression by hepatitis B virus X protein during hepatocarcinogenesis. Oncogenesis. 2012;1(9):e25.

[304]

Sen N, Gui B, Kumar R. Role of MTA1 in cancer progression and metastasis. Cancer Metastasis Rev. 2014;33(4):879-889.

[305]

Kaminskas E, Farrell AT, Wang YC, Sridhara R, Pazdur R. FDA drug approval summary: azacitidine (5-azacytidine, Vidaza) for injectable suspension. Oncologist. 2005;10(3):176-182.

[306]

Gore SD, Jones C, Kirkpatrick P. Decitabine. Nat Rev Drug Discov. 2006;5(11):891-892.

[307]

Estekizadeh A, Landazuri N, Pantalone MR, et al. 5-Azacytidine treatment results in nuclear exclusion of DNA methyltransferase1, as well as reduced proliferation and invasion in human cytomegalovirusinfected glioblastoma cells. Oncol Rep. 2019;41(5):2927-2936.

[308]

Wu WR, Sun H, Zhang R, et al. Methylation-associated silencing of miR-200b facilitates human hepatocellular carcinoma progression by directly targeting BMI1. Oncotarget. 2016;7(14):18684-18693.

[309]

Chu Y, Fan W, Guo W, et al. miR-1247-5p functions as a tumor suppressor in human hepatocellular carcinoma by targeting Wnt3. Oncol Rep. 2017;38(1):343-351.

[310]

Hong YK, Li Y, Pandit H, et al. Epigenetic modulation enhances immunotherapy for hepatocellular carcinoma. Cell Immunol. 2019;336:66-74.

[311]

Hou XJ, Zhao QD, Jing YY, et al. Methylation mediated Gadd45beta enhanced the chemosensitivity of hepatocellular carcinoma by inhibiting the stemness of liver cancer cells. Cell Biosci. 2017;7:63.

[312]

Grossi I, Arici B, Portolani N, De Petro G, Salvi A. Clinical and biological significance of miR-23b and miR-193a in human hepatocellular carcinoma. Oncotarget. 2017;8(4):6955-6969.

[313]

Miranda-Roblero HO, Saavedra-Salazar LF, Galicia-Moreno M, et al. Pirfenidone reverts global DNA hypomethylation, promoting DNMT1/UHRF/PCNA coupling complex in experimental hepatocarcinoma. Cells. 2024;13(12):1013.

[314]

Zhou Z, Li HQ, Liu F. DNA methyltransferase inhibitors and their therapeutic potential. Curr Top Med Chem. 2018;18(28):2448-2457.

[315]

Chen HQ, Zhao J, Li Y, et al. Epigenetic inactivation of LHX6 mediated microcystin-LR induced hepatocarcinogenesis via the Wnt/beta-catenin and P53 signaling pathways. Environ Pollut. 2019;252(Pt A):216-226.

[316]

Cheng Y, Yin B, Hou T, Chen T, Ping J. The overexpression of GRASP might inhibit cell proliferation and invasion in hepatocellular carcinoma. J Cell Physiol. 2019;234(9):16215-16225..

[317]

Wang Y, Hao J, Liu X, et al. The mechanism of apoliprotein A1 down-regulated by hepatitis B virus. Lipids Health Dis. 2016;15:64.

[318]

Mizuno Y, Maemura K, Tanaka Y, et al. Expression of delta-like 3 is downregulated by aberrant DNA methylation and histone modification in hepatocellular carcinoma. Oncol Rep. 2018;39(5):2209-2216.

[319]

Sanaei M, Kavoosi F. Effect of zebularine on apoptotic pathways in hepatocellular carcinoma cell lines. Int J Prev Med. 2023;14:63.

[320]

Sanaei M, Kavoosi F. Effect of zebularine in comparison to trichostatin A on the intrinsic and extrinsic apoptotic pathway, cell viability, and apoptosis in hepatocellular carcinoma SK-Hep 1, human colorectal cancer SW620, and human pancreatic cancer PaCa-44 cell lines. Iran J Pharm Res. 2021;20(3):310-323.

[321]

Calvisi DF, Ladu S, Gorden A, et al. Ubiquitous activation of Ras and Jak/Stat pathways in human HCC. Gastroenterology. 2006;130(4):1117-1128.

[322]

Lim YP, Lin CL, Lin YN, et al. Antiarrhythmic agents and the risk of malignant neoplasm of liver and intrahepatic bile ducts. PLoS One. 2015;10(1):e0116960.

[323]

Castellano S, Kuck D, Viviano M, et al. Synthesis and biochemical evaluation of delta(2)-isoxazoline derivatives as DNA methyltransferase 1 inhibitors. J Med Chem. 2011;54(21):7663-7677.

[324]

Lee BH, Yegnasubramanian S, Lin X, Nelson WG. Procainamide is a specific inhibitor of DNA methyltransferase 1. J Biol Chem. 2005;280(49):40749-40756.

[325]

Sun N, Zhang J, Zhang C, Zhao B, Jiao A. DNMTs inhibitor SGI-1027 induces apoptosis in Huh7 human hepatocellular carcinoma cells. Oncol Lett. 2018;16(5):5799-5806.

[326]

Kim DH, Ren C, Ryou C, Li J. Direct interaction of DNMT inhibitors to PrPC suppresses pathogenic process of prion. Acta Pharm Sin B. 2019;9(5):952-959.

[327]

Kumar R, Sharma A, Kumari A, Gulati A, Padwad Y, Sharma R. Epigallocatechin gallate suppresses premature senescence of preadipocytes by inhibition of PI3K/Akt/mTOR pathway and induces senescent cell death by regulation of Bax/Bcl-2 pathway. Biogerontology. 2019;20(2):171-189.

[328]

Rodponthukwaji K, Pingrajai P, Jantana S, et al. Epigallocatechin gallate potentiates the anticancer effect of AFP-siRNA-loaded polymeric nanoparticles on hepatocellular carcinoma cells. Nanomaterials. 2023;14(1).

[329]

Li D, Cao D, Cui Y, Sun Y, Jiang J, Cao X. The potential of epigallocatechin gallate in the chemoprevention and therapy of hepatocellular carcinoma. Front Pharmacol. 2023;14:1201085.

[330]

Zhang Y, Duan W, Owusu L, Wu D, Xin Y. Epigallocatechin-3-gallate induces the apoptosis of hepatocellular carcinoma LM6 cells but not non-cancerous liver cells. Int J Mol Med. 2015;35(1):117-124.

[331]

Nishikawa T, Nakajima T, Moriguchi M, et al. A green tea polyphenol, epigalocatechin-3-gallate, induces apoptosis of human hepatocellular carcinoma, possibly through inhibition of Bcl-2 family proteins. J Hepatol. 2006;44(6):1074-1082.

[332]

Liu YC, Su CW, Ko PS, et al. A clinical trial with valproic acid and hydralazine in combination with gemcitabine and cisplatin followed by doxorubicin and dacarbazine for advanced hepatocellular carcinoma. Asia Pac J Clin Oncol. 2022;18(1):19-27.

[333]

Tran DDH, Koch A, Allister A, et al. Treatment with MAPKAP2 (MK2) inhibitor and DNA methylation inhibitor, 5-aza dC, synergistically triggers apoptosis in hepatocellular carcinoma (HCC) via tristetraprolin (TTP). Cell Signal. 2016;28(12):1872-1880.

[334]

Kuang Y, El-Khoueiry A, Taverna P, Ljungman M, Neamati N. Guadecitabine (SGI-110) priming sensitizes hepatocellular carcinoma cells to oxaliplatin. Mol Oncol. 2015;9(9):1799-1814.

[335]

Ogunleye A, Piyawajanusorn C, Ghislat G, Ballester PJ. Large-Scale machine learning analysis reveals DNA methylation and gene expression response signatures for gemcitabine-treated pancreatic cancer. Health Data Sci. 2024;4:0108.

[336]

Bomane A, Goncalves A, Ballester PJ. Paclitaxel response can be predicted with interpretable multi-variate classifiers exploiting DNA-methylation and miRNA data. Front Genet. 2019;10:1041.

[337]

Mansur A, Vrionis A, Charles JP, et al. The role of artificial intelligence in the detection and implementation of biomarkers for hepatocellular carcinoma: outlook and opportunities. Cancers (Basel). 2023;15(11):2928.

[338]

Kaur H, Bhalla S, Raghava GPS. Classification of early and late stage liver hepatocellular carcinoma patients from their genomics and epigenomics profiles. PLoS One. 2019;14(9):e0221476.

[339]

Chaudhary K, Poirion OB, Lu L, Garmire LX. Deep learning-based multi-omics integration robustly predicts survival in liver cancer. Clin Cancer Res. 2018;24(6):1248-1259.

[340]

Huang G, Wang C, Fu X. Bidirectional deep neural networks to integrate RNA and DNA data for predicting outcome for patients with hepatocellular carcinoma. Future Oncol. 2021;17(33):4481-4495.

[341]

Ahmed F, Mishra NK, Alghamdi OA, et al. Deciphering KDM8 dysregulation and CpG methylation in hepatocellular carcinoma using multi-omics and machine learning. Epigenomics. 2024;16(13):961-983.

[342]

Dong RZ, Yang X, Zhang XY, et al. Predicting overall survival of patients with hepatocellular carcinoma using a three-category method based on DNA methylation and machine learning. J Cell Mol Med. 2019;23(5):3369-3374.

[343]

Li J, Wei L, Zhang X, et al. DISMIR: deep learning-based noninvasive cancer detection by integrating DNA sequence and methylation information of individual cell-free DNA reads. Brief Bioinform. 2021;22(6):bbab250.

[344]

Bedon L, Dal Bo M, Mossenta M, Busato D, Toffoli G, Polano M. A novel epigenetic machine learning model to define risk of progression for hepatocellular carcinoma patients. Int J Mol Sci. 2021;22(3):1075.

[345]

Goncalves E, Goncalves-Reis M, Pereira-Leal JB, Cardoso J. DNA methylation fingerprint of hepatocellular carcinoma from tissue and liquid biopsies. Sci Rep. 2022;12(1):11512.

[346]

Kandimalla R, Xu J, Link A, et al. EpiPanGI Dx: a cell-free DNA methylation fingerprint for the early detection of gastrointestinal cancers. Clin Cancer Res. 2021;27(22):6135-6144.

RIGHTS & PERMISSIONS

2024 The Author(s). Clinical and Translational Medicine published by John Wiley & Sons Australia, Ltd on behalf of Shanghai Institute of Clinical Bioinformatics.

AI Summary AI Mindmap
PDF

115

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/