Cooling wound dressings: Prospects for clinical practice

Peng Chen , Pingping Zhang , Jiangang Sun , Yangzhe Hou , Xianhu Liu

Clinical and Translational Medicine ›› 2024, Vol. 14 ›› Issue (10) : e70064

PDF
Clinical and Translational Medicine ›› 2024, Vol. 14 ›› Issue (10) : e70064 DOI: 10.1002/ctm2.70064
COMMENTARY

Cooling wound dressings: Prospects for clinical practice

Author information +
History +
PDF

Cite this article

Download citation ▾
Peng Chen, Pingping Zhang, Jiangang Sun, Yangzhe Hou, Xianhu Liu. Cooling wound dressings: Prospects for clinical practice. Clinical and Translational Medicine, 2024, 14(10): e70064 DOI:10.1002/ctm2.70064

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Yu J, Navarro J, Coburn JC, et al. Current and future perspectives on skin tissue engineering: key features of biomedical research, translational assessment, and clinical application. Adv Healthc Mater. 2019; 8(5): e1801471.

[2]

Li J, Guo C, Wang Z, et al. Electrical stimulation towards melanoma therapy via liquid metal printed electronics on skin. Clin Transl Med. 2016; 5(1): 21.

[3]

Wang X, Cheng F, Liu J, et al. Biocomposites of copper-containing mesoporous bioactive glass and nanofibrillated cellulose: biocompatibility and angiogenic promotion in chronic wound healing application. Acta Biomater. 2016; 46: 286-298.

[4]

Zhang L, Yu Y, Zheng S, et al. Preparation and properties of conductive bacterial cellulose-based graphene oxide-silver nanoparticles antibacterial dressing. Carbohydr Polym. 2021; 257: 117671.

[5]

Huang C, Dong L, Zhao B, et al. Anti-inflammatory hydrogel dressings and skin wound healing. Clin Transl Med. 2022; 12(11): e1094.

[6]

Liang Y, He J, Guo B. Functional hydrogels as wound dressing to enhance wound healing. ACS Nano. 2021; 15(8): 12687-12722.

[7]

El-Naggar ME, Othman SI, Allam AA, et al. Synthesis, drying process and medical application of polysaccharide-based aerogels. Int J Biol Macromol. 2020; 145: 1115-1128.

[8]

Zhang H, Chen C, Zhang H, et al. Janus medical sponge dressings with anisotropic wettability for wound healing. Appl Mater Today. 2021; 23: 101068.

[9]

Huang J, Fan C, Ma Y, Huang G. Exploring thermal dynamics in wound healing: the impact of temperature and microenvironment. Clin Cosmet Investig Dermatol. 2024; 17: 1251-1258.

[10]

Derwin R, Patton D, Avsar P, et al. The impact of topical agents and dressing on pH and temperature on wound healing: a systematic, narrative review. Int Wound J. 2022; 19(6): 1397-1408.

[11]

Derwin R, Patton D, Strapp H, et al. The effect of inflammation management on pH, temperature, and bacterial burden. Int Wound J. 2023; 20(4): 1118-1129.

[12]

Yu R, Zhang H, Guo B. Conductive biomaterials as bioactive wound dressing for wound healing and skin tissue engineering. Nanomicro Lett. 2021; 14(1): 1.

[13]

Shen S, Deng L, Du Y, et al. Analyzing and mapping the research status, hotspots, and frontiers of biological wound dressings: an in-depth data-driven assessment. Int J Pharm. 2022; 629: 122385.

[14]

Su L, Jia Y, Fu L, et al. The emerging progress on wound dressings and their application in clinic wound management. Heliyon. 2023; 9(12): e22520.

[15]

Liang J, Wu J, Guo J, et al. Radiative cooling for passive thermal management towards sustainable carbon neutrality. Natl Sci Rev. 2023; 10(1): nwac208.

[16]

Huang M, Yang M, Guo X, et al. Scalable multifunctional radiative cooling materials. Prog Mater Sci. 2023; 137: 101144.

[17]

Yang R, Xie F, Li Y, et al. Advancing thermal comfort: an innovative SiO2 microsphere-decorated shish-kebab film composite for enhanced personal cooling. Adv Nano. 2024; 1(1): 86-93.

[18]

Liu X, Zhang M, Hou Y, et al. Hierarchically superhydrophobic stereo-complex poly (lactic acid) aerogel for daytime radiative cooling. Adv Funct Mater. 2022; 32(46): 22707417.

[19]

Lauster T, Mauel A, Herrmann K, et al. From chitosan to chitin: bio-inspired thin films for passive daytime radiative cooling. Adv Sci. 2023; 10(11): e2206616.

[20]

Zhu H, Liu N, Wang Z, et al. Marrying luminescent Au nanoclusters to TiO(2) for visible-light-driven antibacterial application. Nanoscale. 2021; 13(45): 18996-19003.

[21]

Wang Z, Fang Y, Zhou X, et al. Embedding ultrasmall Ag nanoclusters in Luria-Bertani extract via light irradiation for enhanced antibacterial activity. Nano Research. 2020; 13(1): 203-208.

[22]

Wang X, Wang Z, Fang S, et al. Injectable Ag nanoclusters-based hydrogel for wound healing via eliminating bacterial infection and promoting tissue regeneration. Chem Eng J. 2021; 420: 127589.

[23]

Long Y, Wei H, Li J, et al. Effective wound healing enabled by discrete alternative electric fields from wearable nanogenerators. ACS Nano. 2018; 12(12): 12533-12540.

[24]

Bhang SH, Jang WS, Han J, et al. Zinc oxide nanorod-based piezoelectric dermal patch for wound healing. Adv Funct Mater. 2016; 27(1): 1603497.

[25]

Karahaliloglu Z, Kilicay E, Denkbas EB. Antibacterial chitosan/silk sericin 3D porous scaffolds as a wound dressing material. Artif Cells Nanomed Biotechnol. 2017; 45(6): 1-14.

[26]

Lanno GM, Ramos C, Preem L, et al. Antibacterial porous electrospun fibers as skin scaffolds for wound healing applications. ACS Omega. 2020; 5(46): 30011-30022.

[27]

Xu L, Sun D, Tian Y, et al. Self-rehydrating and highly entangled hydrogel for sustainable daytime passive cooling. Chem Eng J. 2024; 479.

[28]

Zeng S, Pian S, Su M, et al. Hierarchical-morphology metafabric for scalable passive daytime radiative cooling. Science. 2021; 373: 692-696.

[29]

Deng C, Zhang H, Zhao B, et al. Highly strength and flame-retardant aerogel cooler with reticular porous structures for building energy saving. Sol Energy. 2024; 279: 112840.

[30]

Hou Y, Jia H, Pan Y, et al. Porous Poly(l-lactide)/poly(d-lactide) blend film with enhanced flexibility and heat resistance via constructing a regularly oriented pore structure. Macromolecules. 2023; 56(18): 7606-7616.

[31]

Ma J, Zeng F, Lin X, et al. A photoluminescent hydrogen-bonded biomass aerogel for sustainable radiative cooling. Science. 2024; 385: 68-74.

[32]

Chen C, Jia X, Li X, et al. Scalable wet-spinning of wearable chitosan-silica textile for all-day radiative cooling. Chem Eng J. 2023; 475: 146307.

[33]

Gamage S, Kang ESH, Åkerlind C, et al. Transparent nanocellulose metamaterial enables controlled optical diffusion and radiative cooling. J Mater Chem C. 2020; 8(34): 11687-11694.

[34]

Jaramillo-Fernandez J, Yang H, Schertel L, et al. Highly-scattering cellulose-based films for radiative cooling. Adv Sci. 2022; 9(8): e2104758.

[35]

Park BK, Um IC, Han SM, et al. Electrospinning to surpass white natural silk in sunlight rejection for radiative cooling. Adv Photonics Res. 2021; 2(6): 2100008.

[36]

Xu P, Xiang B, Zhong W, et al. Biodegradable, scalable and flexible fiber membrane for green passive radiative cooling. Sol Energy Mater Sol Cells. 2023; 253: 112209.

[37]

Shen C, Liu X. DNA and gelatin—a cool aerogel mix. Science. 2024; 385: 30-30.

[38]

Zhang Q, Qi C, Wang X, et al. Daytime radiative cooling dressings for accelerating wound healing under sunlight. Nat Chem Eng. 2024; 1(4): 301-310.

[39]

Yu H, Liu M, Lu X, et al. A cooling wound dressing for accelerating healing under sunlight. Innovation (Camb). 2024; 5(5): 100670.

[40]

Liu X, Hua X, Wu H. Degradation behavior of poly (lactic acid) during accelerated photo-oxidation: insights into structural evolution and mechanical properties. J Polym Environ. 2024; 32(8): 3810-3821.

RIGHTS & PERMISSIONS

2024 The Author(s). Clinical and Translational Medicine published by John Wiley & Sons Australia, Ltd on behalf of Shanghai Institute of Clinical Bioinformatics.

AI Summary AI Mindmap
PDF

147

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/