Insight into prostate cancer osteolytic metastasis by RelB coordination of IL-8 and S100A4

Wenbo Sun , Kenny Xu , Xiao Li , Peipei Qian , Fan Xu , Yanyan Zhang , Xiumei Wang , Zhi Xu , Jiaji Ding , Xinyu Xu , Xiaowei Wei , Qin Jiang , Yong Xu

Clinical and Translational Medicine ›› 2024, Vol. 14 ›› Issue (10) : e70058

PDF
Clinical and Translational Medicine ›› 2024, Vol. 14 ›› Issue (10) : e70058 DOI: 10.1002/ctm2.70058
RESEARCH ARTICLE

Insight into prostate cancer osteolytic metastasis by RelB coordination of IL-8 and S100A4

Author information +
History +
PDF

Abstract

•RelB activates inflammatory signalling by upregulating IL-8 and suppressing AR.

•RelB upregulates S100A4 by cooperating with NFATC1.

•IL-8 boosts EMT by activating Snail 1 and Twist 1, and S100A4 exacerbates osteolytic metastasis via calcium consumption.

•RelB harnesses IL-8 and S100A4 to drive PCa osteolytic metastasis.

Keywords

IL-8 / osteolytic metastasis / prostate cancer / RelB / S100A4

Cite this article

Download citation ▾
Wenbo Sun, Kenny Xu, Xiao Li, Peipei Qian, Fan Xu, Yanyan Zhang, Xiumei Wang, Zhi Xu, Jiaji Ding, Xinyu Xu, Xiaowei Wei, Qin Jiang, Yong Xu. Insight into prostate cancer osteolytic metastasis by RelB coordination of IL-8 and S100A4. Clinical and Translational Medicine, 2024, 14(10): e70058 DOI:10.1002/ctm2.70058

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

BerishRB, AliAN, TelmerPG, Ronald JA, LeongHS. Translational models of prostate cancer bone metastasis. Nat Rev Urol. 2018; 15: 403-421.

[2]

D’OronzoS, WoodS, BrownJE. The use of bisphosphonates to treat skeletal complications in solid tumours. Bone. 2021; 147: 115907.

[3]

HofmanMS, Lawrentschuk N, FrancisRJ, et al. Prostate-specific membrane antigen PET-CT in patients with high-risk prostate cancer before curative-intent surgery or radiotherapy (proPSMA): a prospective, randomised, multicentre study. Lancet. 2020; 395: 1208-1216.

[4]

GartrellBA, SaadF. Managing bone metastases and reducing skeletal related events in prostate cancer. Nat Rev Clin Oncol. 2014; 11: 335-345.

[5]

PolavaramNS, DuttaS, IslamR, et al. Tumor-and osteoclast-derived NRP2 in prostate cancer bone metastases. Bone Res. 2021; 9: 24.

[6]

ColemanRE, Croucher PI, PadhaniAR, et al. Bone metastases. Nature Rev Dis Primers. 2020; 6: 83.

[7]

InfanteM, FabiA, CognettiF, Gorini S, CaprioM, FabbriA. RANKL/RANK/OPG system beyond bone remodeling: involvement in breast cancer and clinical perspectives. J Exp Clin Cancer Res. 2019; 38: 12.

[8]

NakaiY, Okamoto K, TerashimaA, et al. Efficacy of an orally active small-molecule inhibitor of RANKL in bone metastasis. Bone Res. 2019; 7: 1.

[9]

DougallWC. Molecular pathways: osteoclast-dependent and osteoclast-independent roles of the RANKL/RANK/OPG pathway in tumorigenesis and metastasis. Clin Cancer Res. 2012; 18: 326-335.

[10]

PapachristouDJ, BasdraEK, PapavassiliouAG. Bone metastases: molecular mechanisms and novel therapeutic interventions. Med Res Rev. 2012; 32: 611-636.

[11]

WongSK, Mohamad NV, GiazeTR, ChinKY, Mohamed N, Ima-NirwanaS. Prostate cancer and bone metastases: the underlying mechanisms. Int J Mol Sci. 2019; 20: 2587.

[12]

HaraT, Miyazaki H, LeeA, TranCP, ReiterRE. Androgen receptor and invasion in prostate cancer. Cancer Res. 2008; 68: 1128-1135.

[13]

LabrecqueMP, BrownLG, ColemanIM, et al. RNA splicing factors SRRM3 and SRRM4 distinguish molecular phenotypes of castration-resistant neuroendocrine prostate cancer. Cancer Res. 2021; 81: 4736-4750.

[14]

KnudsenKE, ScherHI. Starving the addiction: new opportunities for durable suppression of AR signaling in prostate cancer. Clin Cancer Res. 2009; 15: 4792-4798.

[15]

BluemnEG, Coleman IM, LucasJM, et al. Androgen receptor pathway-independent prostate cancer is sustained through FGF signaling. Cancer Cell. 2017; 32: 474-489. e6.

[16]

NiuY, Altuwaijri S, LaiKP, et al. Androgen receptor is a tumor suppressor and proliferator in prostate cancer. Proc Natl Acad Sci USA. 2008; 105: 12182-12187.

[17]

JinR, YiY, YullFE, et al. NF-κB gene signature predicts prostate cancer progression. Cancer Res. 2014; 74: 2763-2772.

[18]

Don-DoncowN, Marginean F, ColemanI, et al. Expression of STAT3 in prostate cancer metastases. Eur Urol. 2017; 71: 313-316.

[19]

FernandoRI, Castillo MD, LitzingerM, HamiltonDH, PalenaC. IL-8 signaling plays a critical role in the epithelial-mesenchymal transition of human carcinoma cells. Cancer Res. 2011; 71: 5296-5306.

[20]

XuY, JossonS, FangF, et al. RelB enhances prostate cancer growth: implications for the role of the nuclear factor-kappaB alternative pathway in tumorigenicity. Cancer Res. 2009; 69: 3267-3271.

[21]

YuG, ChengCJ, LinSC, et al. Organelle-derived acetyl-CoA promotes prostate cancer cell survival, migration, and metastasis via activation of calmodulin kinase II. Cancer Res. 2018; 78: 2490-2502.

[22]

KimH, KimB, Il KimS, et al. S100A4 released from highly bone-metastatic breast cancer cells plays a critical role in osteolysis. Bone Res. 2019; 7: 30.

[23]

KimB, JungS, KimH, et al. The role of S100A4 for bone metastasis in prostate cancer cells. BMC Cancer. 2021; 21: 137.

[24]

LiuZ, MarKB, HannersNW, et al. A NIK-SIX signalling axis controls inflammation by targeted silencing of non-canonical NF-κB. Nature. 2019; 568: 249-253.

[25]

ZhangY, ZhuS, DuY, et al. RelB upregulates PD-L1 and exacerbates prostate cancer immune evasion. J Exp Clin Cancer Res. 2022; 41: 66.

[26]

KimS, ZhangY, TangS, et al. Optimizing live-animal bioluminescence imaging prediction of tumor burden in human prostate cancer xenograft models in SCID-NSG mice. Prostate. 2019; 79: 949-960.

[27]

OoiLL, ZhengY, ZhouH, et al. Vitamin D deficiency promotes growth of MCF-7 human breast cancer in a rodent model of osteosclerotic bone metastasis. Bone. 2010; 47: 795-803.

[28]

KuchimaruT, Kataoka N, NakagawaK, et al. A reliable murine model of bone metastasis by injecting cancer cells through caudal arteries. Nat Commun. 2018; 9: 2981.

[29]

CildirG, LowKC, TergaonkarV. Noncanonical NF-κB signaling in health and disease. Trends Mol Med. 2016; 22: 414-429.

[30]

LapointeS, PerryA, ButowskiNA. Primary brain tumours in adults. Lancet. 2018; 392: 432-446.

[31]

WaughDJ, WilsonC. The interleukin-8 pathway in cancer. Clin Cancer Res. 2008; 14: 6735-6741.

[32]

MalinenM, Niskanen EA, KaikkonenMU, PalvimoJJ. Crosstalk between androgen and pro-inflammatory signaling remodels androgen receptor and NF-κB cistrome to reprogram the prostate cancer cell transcriptome. Nucleic Acids Res. 2017; 45: 619-630.

[33]

TanC, HuW, HeY, et al. Cytokine-mediated therapeutic resistance in breast cancer. Cytokine. 2018; 108: 151-159.

[34]

OliveraI, Sanz-Pamplona R, BolañosE, et al. A therapeutically actionable protumoral axis of cytokines involving IL-8, TNFα, and IL-1β. Cancer Discov. 2022; 12: 2140-2157.

[35]

YuenKC, LiuLF, GuptaV, et al. High systemic and tumor-associated IL-8 correlates with reduced clinical benefit of PD-L1 blockade. Nat Med. 2020; 26: 693-698.

[36]

MarinoS, BishopRT, CarrascoG, Logan JG, LiB, IdrisAI. Pharmacological inhibition of NFκB reduces prostate cancer related osteoclastogenesis in vitro and osteolysis ex vivo. Calcif Tissue Int. 2019; 105: 193-204.

[37]

MakinoT, IzumiK, MizokamiA. Undesirable status of prostate cancer cells after intensive inhibition of AR signaling: post-AR era of CRPC treatment. Biomedicines. 2021; 9: 414.

[38]

VellkyJE, RickeWA. Development and prevalence of castration-resistant prostate cancer subtypes. Neoplasia. 2020; 22: 566-575.

[39]

RyeomS, BaekKH, RiothMJ, et al. Targeted deletion of the calcineurin inhibitor DSCR1 suppresses tumor growth. Cancer Cell. 2008; 13: 420-431.

[40]

HoPC, Bihuniak JD, MacintyreAN, et al. Phosphoenolpyruvate is a metabolic checkpoint of anti-tumor T cell responses. Cell. 2015; 162: 1217-1228.

[41]

GanaieAA, Mansini AP, HussainT, et al. Anti-S100A4 antibody therapy is efficient in treating aggressive prostate cancer and reversing immunosuppression: serum and biopsy S100A4 as a clinical predictor. Mol Cancer Ther. 2020; 19: 2598-2611.

[42]

SchalperKA, Carleton M, ZhouM, et al. Elevated serum interleukin-8 is associated with enhanced intratumor neutrophils and reduced clinical benefit of immune-checkpoint inhibitors. Nat Med. 2020; 26: 688-692.

[43]

TiedemannK, Hussein O, KomarovaSV. Role of altered metabolic microenvironment in osteolytic metastasis. Front Cell Dev Biol. 2020; 8: 435.

[44]

HuangZ, TangB, YangY, et al. MAP3K7-IKK inflammatory signaling modulates AR protein degradation and prostate cancer progression. Cancer Res. 2021; 81: 4471-4484.

[45]

JinR, Yamashita H, YuX, et al. Inhibition of NF-kappa B signaling restores responsiveness of castrate-resistant prostate cancer cells to anti-androgen treatment by decreasing androgen receptor-variant expression. Oncogene. 2015; 34: 3700-3710.

[46]

MorelKL, HamidAA, ClohessyJG, Pandell N, EllisL, SweeneyCJ. NF-κB blockade with oral administration of dimethylaminoparthenolide (DMAPT), delays prostate cancer resistance to androgen receptor (AR) inhibition and inhibits AR variants. Mol Cancer Res. 2021; 19: 1137-1145.

[47]

KoS, ShiL, KimS, SongCS, ChatterjeeB. Interplay of nuclear factor-kappaB and B-myb in the negative regulation of androgen receptor expression by tumor necrosis factor alpha. Mol Endocrinol. 2008; 22: 273-286.

[48]

GrossetAA, Ouellet V, CaronC, et al. Validation of the prognostic value of NF-κB p65 in prostate cancer: a retrospective study using a large multi-institutional cohort of the Canadian Prostate Cancer Biomarker Network. PLoS Med. 2019; 16: e1002847.

[49]

PuisieuxA, Brabletz T, CaramelJ. Oncogenic roles of EMT-inducing transcription factors. Nat Cell Biol. 2014; 16: 488-494.

[50]

LüöndF, Sugiyama N, BillR, et al. Distinct contributions of partial and full EMT to breast cancer malignancy. Dev Cell. 2021; 56: 3203-3221. e11.

[51]

BrabletzS, Schuhwerk H, BrabletzT, StemmlerMP. Dynamic EMT: a multi-tool for tumor progression. EMBO J. 2021; 40: e108647.

[52]

YangMH, ChenCL, ChauGY, et al. Comprehensive analysis of the independent effect of twist and snail in promoting metastasis of hepatocellular carcinoma. Hepatology. 2009; 50: 1464-1474.

[53]

TaubeJH, Herschkowitz JI, KomurovK, et al. Core epithelial-to-mesenchymal transition interactome gene-expression signature is associated with claudin-low and metaplastic breast cancer subtypes. Proc Natl Acad Sci USA. 2010; 107: 15449-15454.

[54]

ZhengX, Carstens JL, KimJ, et al. Epithelial-to-mesenchymal transition is dispensable for metastasis but induces chemoresistance in pancreatic cancer. Nature. 2015; 527: 525-530.

[55]

ZhouY, ShurinGV, ZhongH, Bunimovich YL, HanB, ShurinMR. Schwann cells augment cell spreading and metastasis of lung cancer. Cancer Res. 2018; 78: 5927-5939.

[56]

DemirkanB. The roles of epithelial-to-mesenchymal transition (EMT) and mesenchymal-to-epithelial transition (MET) in breast cancer bone metastasis: potential targets for prevention and treatment. J Clin Med. 2013; 2: 264-282.

[57]

GöbelA, Dell’Endice S, JaschkeN, et al. The role of inflammation in breast and prostate cancer metastasis to bone. Int J Mol Sci. 2021; 22: 5078.

[58]

KorkayaH, KimGI, DavisA, et al. Activation of an IL6 inflammatory loop mediates trastuzumab resistance in HER2+ breast cancer by expanding the cancer stem cell population. Mol Cell. 2012; 47: 570-584.

[59]

RokavecM, Öner MG, LiH, et al. IL-6R/STAT3/miR-34a feedback loop promotes EMT-mediated colorectal cancer invasion and metastasis. Journal Clin Invest. 2014; 124: 1853-1867.

[60]

FousekK, HornLA, PalenaC. Interleukin-8: a chemokine at the intersection of cancer plasticity, angiogenesis, and immune suppression. Pharmacol Ther. 2021; 219: 107692.

[61]

Ishay-RonenD, Diepenbruck M, KalathurRKR, et al. Gain fat-lose metastasis: converting invasive breast cancer cells into adipocytes inhibits cancer metastasis. Cancer Cell. 2019; 35: 17-32. e6.

[62]

ClézardinP, Coleman R, PuppoM, et al. Bone metastasis: mechanisms, therapies, and biomarkers. Physiol Rev. 2021; 101: 797-855.

[63]

FornettiJ, WelmAL, StewartSA. Understanding the bone in cancer metastasis. J Bone Miner Res. 2018; 33: 2099-2113.

[64]

LiuH, HeJ, Bagheri-YarmandR, et al. Osteocyte CIITA aggravates osteolytic bone lesions in myeloma. Nat Commun. 2022; 13: 3684.

[65]

LynchCC. Matrix metalloproteinases as master regulators of the vicious cycle of bone metastasis. Bone. 2011; 48: 44-53.

[66]

WangS, LiGX, TanCC, et al. FOXF2 reprograms breast cancer cells into bone metastasis seeds. Nat Commun. 2019; 10: 2707.

[67]

LiJ, LiY, PengX, Li B, YuanX, ChenY. Emodin attenuates titanium particle-induced osteolysis and RANKL-mediated osteoclastogenesis through the suppression of IKK phosphorylation. Mol Immunol. 2018; 96: 8-18.

[68]

IkebuchiY, AokiS, HonmaM, et al. Coupling of bone resorption and formation by RANKL reverse signalling. Nature. 2018; 561: 195-200.

RIGHTS & PERMISSIONS

2024 The Author(s). Clinical and Translational Medicine published by John Wiley & Sons Australia, Ltd on behalf of Shanghai Institute of Clinical Bioinformatics.

AI Summary AI Mindmap
PDF

79

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/