Evolution of aberrant brain-wide spatiotemporal dynamics of resting-state networks in a Huntington’s disease mouse model

Tamara Vasilkovska , Marlies Verschuuren , Dorian Pustina , Monica van den Berg , Johan Van Audekerke , Isabel Pintelon , Roger Cachope , Winnok H. De Vos , Annemie Van der Linden , Mohit H. Adhikari , Marleen Verhoye

Clinical and Translational Medicine ›› 2024, Vol. 14 ›› Issue (10) : e70055

PDF
Clinical and Translational Medicine ›› 2024, Vol. 14 ›› Issue (10) : e70055 DOI: 10.1002/ctm2.70055
RESEARCH ARTICLE

Evolution of aberrant brain-wide spatiotemporal dynamics of resting-state networks in a Huntington’s disease mouse model

Author information +
History +
PDF

Abstract

•Hyperactivity in the LCN-linked regions within short QPPs observed before motor impairment onset.

•DMLN QPP presents a progressive decrease in DMLN activity and occurrence along HD-like phenotype development.

•Breakdown of the LCN DMLN state flux at motor onset leads to a subsequent absence of the LCN DMLN QPP at an advanced HD-like stage.

Keywords

astrocytes / biomarkers / Huntington’s disease / large-scale brain networks / neurodegeneration / pericytes / quasi-periodic patterns / resting-state fMRI / VEGF

Cite this article

Download citation ▾
Tamara Vasilkovska, Marlies Verschuuren, Dorian Pustina, Monica van den Berg, Johan Van Audekerke, Isabel Pintelon, Roger Cachope, Winnok H. De Vos, Annemie Van der Linden, Mohit H. Adhikari, Marleen Verhoye. Evolution of aberrant brain-wide spatiotemporal dynamics of resting-state networks in a Huntington’s disease mouse model. Clinical and Translational Medicine, 2024, 14(10): e70055 DOI:10.1002/ctm2.70055

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

GhoshR, Tabrizi SJ. Clinical features of Huntington’s disease. Adv Exp Med Biol. 2018; 1049: 1-28.

[2]

BatesGP, DorseyR, GusellaJF, et al. Huntington disease. Nat Rev Dis Primers. 2015; 1: 15005.

[3]

The Huntington’s Disease Collaborative Research Group. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell. 1993; 72(6): 971-983.

[4]

RossCA, Aylward EH, WildEJ, et al. Huntington disease: natural history, biomarkers and prospects for therapeutics. Nat Rev Neurol. 2014; 10(4): 204-216.

[5]

Georgiou-KaristianisN, Scahill R, TabriziSJ, SquitieriF, Aylward E. Structural MRI in Huntington’s disease and recommendations for its potential use in clinical trials. Neurosci Biobehav Rev. 2013; 37(3): 480-490.

[6]

ScahillRI, AndreR, TabriziSJ, Aylward EH. Structural imaging in premanifest and manifest Huntington disease. Handb Clin Neurol. 2017; 144: 247-261.

[7]

PiniL, Jacquemot C, CagninA, et al. Aberrant brain network connectivity in presymptomatic and manifest Huntington’s disease: a systematic review. Hum Brain Mapp. 2020; 41(1): 256-269.

[8]

LoweMJ, Dzemidzic M, LuritoJT, MathewsVP, Phillips MD. Correlations in low-frequency BOLD fluctuations reflect cortico-cortical connections. Neuroimage. 2000; 12(5): 582-587.

[9]

GreiciusMD, Krasnow B, ReissAL, MenonV. Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci USA. 2003; 100(1): 253-258.

[10]

FranssonP. Spontaneous low-frequency BOLD signal fluctuations: an fMRI investigation of the resting-state default mode of brain function hypothesis. Hum Brain Mapp. 2005; 26(1): 15-29.

[11]

ZhangHY, WangSJ, LiuB, et al. Resting brain connectivity: changes during the progress of Alzheimer disease. Radiology. 2010; 256(2): 598-606.

[12]

LuoC, SongW, ChenQ, et al. Reduced functional connectivity in early-stage drug-naive Parkinson’s disease: a resting-state fMRI study. Neurobiol Aging. 2014; 35(2): 431-441.

[13]

PoudelGR, EganGF, ChurchyardA, Chua P, StoutJC, Georgiou-KaristianisN. Abnormal synchrony of resting state networks in premanifest and symptomatic Huntington disease: the IMAGE-HD study. J Psychiatry Neurosci. 2014; 39(2): 87-96.

[14]

DumasEM, van den Bogaard SJ, HartEP, et al. Reduced functional brain connectivity prior to and after disease onset in Huntington’s disease. Neuroimage Clin. 2013; 2: 377-384.

[15]

WolfRC, Sambataro F, VasicN, et al. Visual system integrity and cognition in early Huntington’s disease. Eur J Neurosci. 2014; 40(2): 2417-2426.

[16]

CalhounVD, MillerR, PearlsonG, Adali T. The chronnectome: time-varying connectivity networks as the next frontier in fMRI data discovery. Neuron. 2014; 84(2): 262-274.

[17]

AllenEA, Damaraju E, PlisSM, ErhardtEB, Eichele T, CalhounVD. Tracking whole-brain connectivity dynamics in the resting state. Cereb Cortex. 2014; 24(3): 663-676.

[18]

MajeedW, Magnuson M, KeilholzSD. Spatiotemporal dynamics of low frequency fluctuations in BOLD fMRI of the rat. J Magn Reson Imaging. 2009; 30(2): 384-393.

[19]

YousefiB, Keilholz S. Propagating patterns of intrinsic activity along macroscale gradients coordinate functional connections across the whole brain. Neuroimage. 2021; 231: 117827.

[20]

WangK, MajeedW, ThompsonG, Ying K, ZhuY, KeilholzS. Quasi-periodic pattern of fMRI contributes to functional connectivity and explores differences between Major Depressive disorder and control. Proc Int Soc Magn Reson Med. 2016: 1683.

[21]

AbbasA, BassilY, KeilholzS. Quasi-periodic patterns of brain activity in individuals with attention-deficit/hyperactivity disorder. Neuroimage Clin. 2019; 21: 101653.

[22]

BelloyME, ShahD, AbbasA, et al. Quasi-periodic patterns of neural activity improve classification of Alzheimer’s disease in mice. Sci Rep. 2018; 8(1): 10024.

[23]

van den BergM, Adhikari MH, VerschuurenM, et al. Altered basal forebrain function during whole-brain network activity at pre-and early-plaque stages of Alzheimer’s disease in TgF344-AD rats. Alzheimers Res Ther. 2022; 14(1): 148.

[24]

Rangel-BarajasC, RebecGV. Overview of Huntington’s disease models: neuropathological, molecular, and behavioral differences. Curr Protoc Neurosci. 2018; 83(1): e47.

[25]

MenalledL, El-Khodor BF, PatryM, et al. Systematic behavioral evaluation of Huntington’s disease transgenic and knock-in mouse models. Neurobiol Dis. 2009; 35(3): 319-336.

[26]

HeikkinenT, Lehtimaki K, VartiainenN, et al. Characterization of neurophysiological and behavioral changes, MRI brain volumetry and 1H MRS in zQ175 knock-in mouse model of Huntington’s disease. PLoS One. 2012; 7(12): e50717.

[27]

VasilkovskaT, Adhikari M, Van AudekerkeJ, et al. Resting-state fMRI reveals longitudinal alterations in brain network connectivity in the zQ175DN mouse model of Huntington’s disease. Neurobiol Dis. 2023; 181: 106095.

[28]

VasilkovskaT, Salajeghe S, VanreuselV, et al. Longitudinal alterations in brain perfusion and vascular reactivity in the zQ175DN mouse model of Huntington’s disease. J Biomed Sci. 2024; 31(1): 37.

[29]

Vidas-GuscicN, van Rijswijk J, Van AudekerkeJ, et al. Diffusion MRI marks progressive alterations in fiber integrity in the zQ175DN mouse model of Huntington’s disease. Neurobiol Dis. 2024; 193: 106438.

[30]

AdhikariMH, Vasilkovska T, CachopeR, et al. Longitudinal investigation of changes in resting-state co-activation patterns and their predictive ability in the zQ175 DN mouse model of Huntington’s disease. Scientific Reports. 2023; 13(1): 10194.

[31]

ZhangC, WuQ, LiuH, et al. Abnormal brain development in Huntington’ disease is recapitulated in the zQ175 knock-in mouse model. Cereb Cortex Commun. 2020; 1(1): tgaa044.

[32]

MenalledLB, KudwaAE, MillerS, et al. Comprehensive behavioral and molecular characterization of a new knock-in mouse model of Huntington’s disease: zQ175. PLoS One. 2012; 7(12): e49838.

[33]

SouthwellAL, Smith-Dijak A, KayC, et al. An enhanced Q175 knock-in mouse model of Huntington disease with higher mutant huntingtin levels and accelerated disease phenotypes. Hum Mol Genet. 2016; 25(17): 3654-3675.

[34]

HeikkinenT, BraggeT, BhattaraiN, et al. Rapid and robust patterns of spontaneous locomotor deficits in mouse models of Huntington’s disease. PLoS One. 2020; 15(12): e0243052.

[35]

CartyN, BersonN, TillackK, et al. Characterization of HTT inclusion size, location, and timing in the zQ175 mouse model of Huntington’s disease: an in vivo high-content imaging study. PLoS One. 2015; 10(4): e0123527.

[36]

FoxJGBS, Davisson MT, NewcomerCE, QuimbyFW, SmithAL. The Mouse in Biomedical Research. 2nd ed. Elsevier; 2007: 637-672.

[37]

MajeedW, Magnuson M, HasenkampW, et al. Spatiotemporal dynamics of low frequency BOLD fluctuations in rats and humans. Neuroimage. 2011; 54(2): 1140-1150.

[38]

BelloyME, Naeyaert M, AbbasA, et al. Dynamic resting state fMRI analysis in mice reveals a set of Quasi-Periodic Patterns and illustrates their relationship with the global signal. Neuroimage. 2018; 180(Pt B): 463-484.

[39]

PraetJ, Manyakov NV, MucheneL, et al. Diffusion kurtosis imaging allows the early detection and longitudinal follow-up of amyloid-beta-induced pathology. Alzheimers Res Ther. 2018; 10(1): 1.

[40]

LiskaA, Galbusera A, SchwarzAJ, GozziA. Functional connectivity hubs of the mouse brain. Neuroimage. 2015; 115: 281-291.

[41]

BukhariQ, Schroeter A, ColeDM, RudinM. Resting state fMRI in mice reveals anesthesia specific signatures of brain functional networks and their interactions. Front Neural Circuits. 2017; 11: 5.

[42]

JankeAL, Ullmann JF. Robust methods to create ex vivo minimum deformation atlases for brain mapping. Methods. 2015; 73: 18-26.

[43]

SchindelinJ, Arganda-Carreras I, FriseE, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012; 9(7): 676-682.

[44]

De VosWH, Van Neste L, DieriksB, JossGH, Van Oostveldt P. High content image cytometry in the context of subnuclear organization. Cytometry A. 2010; 77(1): 64-75.

[45]

VerschuurenM, Verstraelen P, Garcia-Diaz BarrigaG, et al. High-throughput microscopy exposes a pharmacological window in which dual leucine zipper kinase inhibition preserves neuronal network connectivity. Acta Neuropathol Commun. 2019; 7(1): 93.

[46]

VerstraelenP, Garcia-Diaz Barriga G, VerschuurenM, et al. Systematic quantification of synapses in primary neuronal culture. iScience. 2020; 23(9): 101542.

[47]

SchmidtU, Weigert M, BroaddusC, MyersG. Cell Detection with Star-Convex Polygons. Springer International Publishing; 2018: 265-273.

[48]

LongairMP, Schindelin J. “Tubeness” plugin for ImageJ.

[49]

SatoY, Nakajima S, ShiragaN, et al. Three-dimensional multi-scale line filter for segmentation and visualization of curvilinear structures in medical images. Med Image Anal. 1998; 2(2): 143-168.

[50]

CoreTea. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; 2014.

[51]

ThompsonGJ, PanWJ, BillingsJC, et al. Phase-amplitude coupling and infraslow (<1 Hz) frequencies in the rat brain: relationship to resting state fMRI. Front Integr Neurosci. 2014; 8: 41.

[52]

KeilholzSD, Magnuson ME, PanWJ, WillisM, Thompson GJ. Dynamic properties of functional connectivity in the rodent. Brain Connect. 2013; 3(1): 31-40.

[53]

ThompsonGJ, PanWJ, KeilholzSD. Different dynamic resting state fMRI patterns are linked to different frequencies of neural activity. J Neurophysiol. 2015; 114(1): 114-124.

[54]

AbbasA, BelloyM, KashyapA, et al. Quasi-periodic patterns contribute to functional connectivity in the brain. Neuroimage. 2019; 191: 193-204.

[55]

RibattiD, NicoB, CrivellatoE. The role of pericytes in angiogenesis. Int J Dev Biol. 2011; 55(3): 261-268.

[56]

SalhiaB, Angelov L, RoncariL, WuX, Shannon P, GuhaA. Expression of vascular endothelial growth factor by reactive astrocytes and associated neoangiogenesis. Brain Res. 2000; 883(1): 87-97.

[57]

BonkowskiD, Katyshev V, BalabanovRD, BorisovA, Dore-Duffy P. The CNS microvascular pericyte: pericyte-astrocyte crosstalk in the regulation of tissue survival. Fluids Barriers CNS. 2011; 8(1): 8.

[58]

BogaertE, Van Damme P, PoesenK, et al. VEGF protects motor neurons against excitotoxicity by upregulation of GluR2. Neurobiol Aging. 2010; 31(12): 2185-2191.

[59]

EllisonSM, Trabalza A, TisatoV, et al. Dose-dependent neuroprotection of VEGF(1)(6)(5) in Huntington’s disease striatum. Mol Ther. 2013; 21(10): 1862-1875.

[60]

StorkebaumE, Carmeliet P. VEGF: a critical player in neurodegeneration. J Clin Invest. 2004; 113(1): 14-18.

[61]

LiuH, ZhangC, XuJ, et al. Huntingtin silencing delays onset and slows progression of Huntington’s disease: a biomarker study. Brain. 2021; 144(10): 3101-3113.

[62]

WhitesellJD, LiskaA, ColettaL, et al. Regional, layer, and cell-type-specific connectivity of the mouse default mode network. Neuron. 2021; 109(3): 545-559.

[63]

DonzisEJ, Estrada-Sanchez AM, IndersmittenT, et al. Cortical network dynamics is altered in mouse models of Huntington’s disease. Cereb Cortex. 2020; 30(4): 2372-2388.

[64]

IndersmittenT, TranCH, CepedaC, Levine MS. Altered excitatory and inhibitory inputs to striatal medium-sized spiny neurons and cortical pyramidal neurons in the Q175 mouse model of Huntington’s disease. J Neurophysiol. 2015; 113(7): 2953-2966.

[65]

WangY, Ramandi D, SepersMD, MackayJP, Raymond LA. Age-and region-dependent cortical excitability in the zQ175 Huntington disease mouse model. Hum Mol Genet. 2024; 33(5): 387-399.

[66]

WangY, SepersMD, XiaoD, Raymond LA, MurphyTH. Water-reaching platform for longitudinal assessment of cortical activity and fine motor coordination defects in a Huntington disease mouse model. eNeuro. 2023; 10(1).

[67]

Aracil-BolanosI, Martinez-Horta S, Gonzalez-de-EchavarriJM, et al. Structure and dynamics of large-scale cognitive networks in Huntington’s disease. Mov Disord. 2022; 37(2): 343-353.

[68]

MarguliesDS, GhoshSS, GoulasA, et al. Situating the default-mode network along a principal gradient of macroscale cortical organization. Proc Natl Acad Sci U S A. 2016; 113(44): 12574-12579.

[69]

Vazquez-RodriguezB, Suarez LE, MarkelloRD, et al. Gradients of structure-function tethering across neocortex. Proc Natl Acad Sci U S A. 2019; 116(42): 21219-21227.

[70]

HuntenburgJM, YeowLY, MandinoF, Grandjean J. Gradients of functional connectivity in the mouse cortex reflect neocortical evolution. Neuroimage. 2021; 225: 117528.

[71]

ShafieiG, Baillet S, MisicB. Human electromagnetic and haemodynamic networks systematically converge in unimodal cortex and diverge in transmodal cortex. PLoS Biol. 2022; 20(8): e3001735.

[72]

FulcherBD, MurrayJD, ZerbiV, Wang XJ. Multimodal gradients across mouse cortex. Proc Natl Acad Sci U S A. 2019; 116(10): 4689-4695.

[73]

ChuangKH, LiZ, HuangHH, Khorasani GerdekoohiS, AthwalD. Hemodynamic transient and functional connectivity follow structural connectivity and cell type over the brain hierarchy. Proc Natl Acad Sci U S A. 2023; 120(5): e2202435120.

[74]

ZarkaliA, McColgan P, LeylandLA, LeesAJ, ReesG, WeilRS. Organisational and neuromodulatory underpinnings of structural-functional connectivity decoupling in patients with Parkinson’s disease. Commun Biol. 2021; 4(1): 86.

[75]

GlasserMF, Van Essen DC. Mapping human cortical areas in vivo based on myelin content as revealed by T1-and T2-weighted MRI. J Neurosci. 2011; 31(32): 11597-11616.

[76]

KuberaKM, Schmitgen MM, HirjakD, WolfRC, OrthM. Cortical neurodevelopment in pre-manifest Huntington’s disease. Neuroimage Clin. 2019; 23: 101913.

[77]

BarnatM, Capizzi M, AparicioE, et al. Huntington’s disease alters human neurodevelopment. Science. 2020; 369(6505): 787-793.

[78]

van der PlasE, Schultz JL, NopoulosPC. The Neurodevelopmental hypothesis of Huntington’s disease. J Huntingtons Dis. 2020; 9(3): 217-229.

[79]

van der PlasE, Langbehn DR, ConradAL, et al. Abnormal brain development in child and adolescent carriers of mutant huntingtin. Neurology. 2019; 93(10): e1021-e1030.

[80]

MehlerMF, GokhanS. Mechanisms underlying neural cell death in neurodegenerative diseases: alterations of a developmentally-mediated cellular rheostat. Trends Neurosci. 2000; 23(12): 599-605.

[81]

CepedaC, Oikonomou KD, CummingsD, et al. Developmental origins of cortical hyperexcitability in Huntington’s disease: review and new observations. J Neurosci Res. 2019; 97(12): 1624-1635.

[82]

BrazBY, Wennagel D, RatieL, et al. Treating early postnatal circuit defect delays Huntington’s disease onset and pathology in mice. Science. 2022; 377(6613): eabq5011.

[83]

TereshchenkoAV, Schultz JL, BrussJE, MagnottaVA, EppingEA, NopoulosPC. Abnormal development of cerebellar-striatal circuitry in Huntington disease. Neurology. 2020; 94(18): e1908-e1915.

[84]

KhakhBS, Beaumont V, CachopeR, Munoz-SanjuanI, Goldman SA, GrantynR. Unravelling and exploiting astrocyte dysfunction in Huntington’s disease. Trends Neurosci. 2017; 40(7): 422-437.

[85]

KhakhBS, Goldman SA. Astrocytic contributions to Huntington’s disease pathophysiology. Ann N Y Acad Sci. 2023; 1522(1): 42-59.

[86]

JansenAH, van Hal M, Op den KelderIC, et al. Frequency of nuclear mutant huntingtin inclusion formation in neurons and glia is cell-type-specific. Glia. 2017; 65(1): 50-61.

[87]

TongX, AoY, FaasGC, et al. Astrocyte Kir4.1 ion channel deficits contribute to neuronal dysfunction in Huntington’s disease model mice. Nat Neurosci. 2014; 17(5): 694-703.

[88]

Diaz-CastroB, Gangwani MR, YuX, CoppolaG, KhakhBS. Astrocyte molecular signatures in Huntington’s disease. Sci Transl Med. 2019; 11(514).

[89]

HallCN, Reynell C, GessleinB, et al. Capillary pericytes regulate cerebral blood flow in health and disease. Nature. 2014; 508(7494): 55-60.

[90]

BrownLS, FosterCG, CourtneyJM, King NE, HowellsDW, SutherlandBA. Pericytes and neurovascular function in the healthy and diseased brain. Front Cell Neurosci. 2019; 13: 282.

[91]

HsiaoHY, ChenYC, HuangCH, et al. Aberrant astrocytes impair vascular reactivity in Huntington disease. Ann Neurol. 2015; 78(2): 178-192.

[92]

Drouin-OuelletJ, SawiakSJ, CisbaniG, et al. Cerebrovascular and blood-brain barrier impairments in Huntington’s disease: potential implications for its pathophysiology. Ann Neurol. 2015; 78(2): 160-177.

[93]

LangeC, Storkebaum E, de AlmodovarCR, DewerchinM, Carmeliet P. Vascular endothelial growth factor: a neurovascular target in neurological diseases. Nat Rev Neurol. 2016; 12(8): 439-454.

[94]

Ruiz de AlmodovarC, Lambrechts D, MazzoneM, CarmelietP. Role and therapeutic potential of VEGF in the nervous system. Physiol Rev. 2009; 89(2): 607-648.

[95]

FosterNN, BarryJ, KorobkovaL, et al. The mouse cortico-basal ganglia-thalamic network. Nature. 2021; 598(7879): 188-194.

[96]

HintiryanH, FosterNN, BowmanI, et al. The mouse cortico-striatal projectome. Nat Neurosci. 2016; 19(8): 1100-1114.

[97]

MumtazF, KhanMI, ZubairM, Dehpour AR. Neurobiology and consequences of social isolation stress in animal model-A comprehensive review. Biomed Pharmacother. 2018; 105: 1205-1222.

[98]

SmithEJ, Sathasivam K, LandlesC, et al. Early detection of exon 1 huntingtin aggregation in zQ175 brains by molecular and histological approaches. Brain Commun. 2023; 5(1): fcad010.

RIGHTS & PERMISSIONS

2024 The Author(s). Clinical and Translational Medicine published by John Wiley & Sons Australia, Ltd on behalf of Shanghai Institute of Clinical Bioinformatics.

AI Summary AI Mindmap
PDF

93

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/