Natural killer cell engagers: From bi-specific to tri-specific and tetra-specific engagers for enhanced cancer immunotherapy

An Zhu , Yu Bai , Yanyang Nan , Dianwen Ju

Clinical and Translational Medicine ›› 2024, Vol. 14 ›› Issue (11) : e70046

PDF
Clinical and Translational Medicine ›› 2024, Vol. 14 ›› Issue (11) : e70046 DOI: 10.1002/ctm2.70046
REVIEW

Natural killer cell engagers: From bi-specific to tri-specific and tetra-specific engagers for enhanced cancer immunotherapy

Author information +
History +
PDF

Abstract

Innovative NKCEs: NK cell engagers (NKCEs) represent a promising new class of immunotherapeutics targeting tumours by activating NK cells.

Multi-specific formats: The transition from bi-specific to multi-specific NKCEs enhances their versatility and therapeutic efficacy.

Mechanisms of action: NKCEs have the potential to improve NK cell activation by engaging activating receptors and incorporating cytokines.

Clinical potential: Current clinical trials demonstrate the safety and efficacy of various NKCEs across different cancer types.

Future research directions: Optimising NKCE designs and exploring combination therapies are essential for overcoming challenges in cancer treatment.

Keywords

bi-specific NKCEs / cytokines / natural killer cell engagers / NK receptors / tetra-specific NKCEs / tri-specific NKCEs

Cite this article

Download citation ▾
An Zhu, Yu Bai, Yanyang Nan, Dianwen Ju. Natural killer cell engagers: From bi-specific to tri-specific and tetra-specific engagers for enhanced cancer immunotherapy. Clinical and Translational Medicine, 2024, 14(11): e70046 DOI:10.1002/ctm2.70046

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Gleason MK, Verneris MR, Todhunter DA, et al. Bispecific and trispecific killer cell engagers directly activate human NK cells through CD16 signaling and induce cytotoxicity and cytokine production. Mol Cancer Ther. 2012;11:2674-2684.

[2]

Gauthier L, Morel A, Anceriz N, et al. Multifunctional natural killer cell engagers targeting NKp46 trigger protective tumor immunity. Cell. 2019;177:1701-1713.

[3]

Shimasaki N, Jain A, Campana D. NK cells for cancer immunotherapy. Nat Rev Drug Discov. 2020;19:200-218.

[4]

Rezvani K, Rouce RH. The application of natural killer cell immunotherapy for the treatment of cancer. Front Immunol. 2015;6:578.

[5]

Demaria O, Gauthier L, Debroas G, Vivier E. Natural killer cell engagers in cancer immunotherapy: next generation of immuno-oncology treatments. Eur J Immunol. 2021;51:1934-1942.

[6]

Fenis A, Demaria O, Gauthier L, et al. New immune cell engagers for cancer immunotherapy. Nat Rev Immunol. 2024;24:471-486.

[7]

Wu J, Fu J, Zhang M, Liu D. AFM13: a first-in-class tetravalent bispecific anti-CD30/CD16A antibody for NK cell-mediated immunotherapy. J Hematol Oncol. 2015;8:96.

[8]

Felices M, Lenvik TR, Davis ZB, et al. Generation of BiKEs and TriKEs to improve NK cell-mediated targeting of tumor cells. Methods Mol Biol. 2016;1441:333-346.

[9]

Vivier E, Raulet DH, Moretta A, et al. Innate or adaptive immunity? The example of natural killer cells. Science. 2011;331:44-49.

[10]

Poznanski SM, Ashkar AA. Shining light on the significance of NK cell CD56 brightness. Cell Mol Immunol. 2018;15:1071-1073.

[11]

Wu SY, Fu T, Jiang YZ, Shao ZM. Natural killer cells in cancer biology and therapy. Mol Cancer. 2020;19:120.

[12]

Duan S, Guo W, Xu Z, et al. Natural killer group 2D receptor and its ligands in cancer immune escape. Mol Cancer. 2019;18:1-14.

[13]

Tapia-Galisteo A, Compte M, Álvarez-Vallina L, Sanz L. When three is not a crowd: trispecific antibodies for enhanced cancer immunotherapy. Theranostics. 2023;13:1028-1041.

[14]

Peterson EE, Barry KC. The natural killer-dendritic cell immune axis in anti-cancer immunity and immunotherapy. Front Immunol. 2021;11:621254.

[15]

Nagelkerke SQ, Schmidt DE, de Haas M, Kuijpers TW. Genetic variation in low-to-medium-affinity Fcγ receptors: functional consequences, disease associations, and opportunities for personalized medicine. Front Immunol. 2019;10:2237.

[16]

Pahl JHW, Koch J, Götz JJ, et al. CD16A activation of NK cells promotes NK cell proliferation and memory-like cytotoxicity against cancer cells. Cancer Immunol Res. 2018;6:517-527.

[17]

Niehrs A, Garcia-Beltran WF, Norman PJ, et al. A subset of HLA-DP molecules serve as ligands for the natural cytotoxicity receptor NKp44. Nat Immunol. 2019;20:1129-1137.

[18]

Gao F, Ye Y, Gao Y, et al. Influence of KIR and NK cell reconstitution in the outcomes of hematopoietic stem cell transplantation. Front Immunol. 2020;11:2022.

[19]

Varla-Leftherioti M, Keramitsoglou T. Natural killer (NK) cell receptors and their role in pregnancy and abortion. J Immunobiol. 2016;1:107.

[20]

Goodridge JP, Burian A, Lee N, Geraghty DE. HLA-F and MHC class I open conformers are ligands for NK cell Ig-like receptors. J Immunol. 2013;191:3553-3562.

[21]

Garcia-Beltran WF, Hölzemer A, Martrus G, et al. Open conformers of HLA-F are high-affinity ligands of the activating NK-cell receptor KIR3DS1. Nat Immunol. 2016;17:1067-1074.

[22]

Coënon L, Villalba M. From CD16a biology to antibody-dependent cell-mediated cytotoxicity improvement. Front Immunol. 2022;13:913215.

[23]

Wingert S, Reusch U, Knackmuss S, et al. Preclinical evaluation of AFM24, a novel CD16A-specific innate immune cell engager targeting EGFR-positive tumors. mAbs. 2021;13:1950264.

[24]

Gleason MK, Ross JA, Warlick ED, et al. CD16xCD33 bispecific killer cell engager (BiKE) activates NK cells against primary MDS and MDSC CD33+ targets. Blood. 2014;123:3016-3026.

[25]

Zhou Q, Gil-Krzewska A, Peruzzi G, Borrego F. Matrix metalloproteinases inhibition promotes the polyfunctionality of human natural killer cells in therapeutic antibody-based anti-tumour immunotherapy. Clin Exp Immunol. 2013;173:131-139.

[26]

Barb AW. Fc γ receptor compositional heterogeneity: considerations for immunotherapy development. J Biol Chem. 2021;296:100057.

[27]

Patel KR, Roberts JT, Barb AW. Multiple variables at the leukocyte cell surface impact Fc γ receptor-dependent mechanisms. Front Immunol. 2019;10:223.

[28]

Zhu H, Blum RH, Bjordahl R, et al. Pluripotent stem cell-derived NK cells with high-affinity noncleavable CD16a mediate improved antitumor activity. Blood. 2020;135:399-410.

[29]

Sarhan D, Brandt L, Felices M, et al. 161533 TriKE stimulates NK-cell function to overcome myeloid-derived suppressor cells in MDS. Blood Adv. 2018;2:1459-1469.

[30]

Champsaur M, Lanier LL. Effect of NKG2D ligand expression on host immune responses. Immunol Rev. 2010;235:267-285.

[31]

González S, Groh V, Spies T. Immunobiology of human NKG2D and its ligands. In: RW Compans, MD Cooper, T Honjo, eds. Immunobiology of Natural Killer Cell Receptors. Springer Berlin Heidelberg; 2006:121-138.

[32]

Ullrich E, Koch J, Cerwenka A, Steinle A. New prospects on the NKG2D/NKG2DL system for oncology. OncoImmunology. 2013;2:e26097.

[33]

Spear P, Wu MR, Sentman ML, Sentman CL. NKG2D ligands as therapeutic targets. Cancer Immun. 2013;13:8.

[34]

Siemaszko J, Marzec-Przyszlak A, Bogunia-Kubik K. NKG2D natural killer cell receptor-A short description and potential clinical applications. Cells. 2021;10:1420.

[35]

Nausch N, Cerwenka A. NKG2D ligands in tumor immunity. Oncogene. 2008;27:5944-5958.

[36]

Phung SK, Miller JS, Felices M. Bi-specific and tri-specific NK cell engagers: the new avenue of targeted NK cell immunotherapy. Mol Diagn Ther. 2021;25:577-592.

[37]

Horng T, Bezbradica JS, Medzhitov R. NKG2D signaling is coupled to the interleukin 15 receptor signaling pathway. Nat Immunol. 2007;8:1345-1352.

[38]

Balsamo M, Manzini C, Pietra G, et al. Hypoxia downregulates the expression of activating receptors involved in NK-cell-mediated target cell killing without affecting ADCC. Eur J Immunol. 2013;43:2756-2764.

[39]

López-Soto A, Huergo-Zapico L, Acebes-Huerta A, et al. NKG2D signaling in cancer immunosurveillance. Int J Cancer. 2015;136:1741-1750.

[40]

Correia MP, Stojanovic A, Bauer K, et al. Distinct human circulating NKp30+FcϵRIγ+CD8 Distinct human circulating NKp30+FcϵRIγ+CD8+ T cell population exhibiting high natural killer-like antitumor potential. Proc Natl Acad Sci USA. 2018;115:E5980-E5989.

[41]

Vivier E, Nunès JA, Vély F.Natural killer cell signaling pathways. Science. 2004;306:1517-1519.

[42]

Kruse PH, Matta J, Ugolini S, Vivier E. Natural cytotoxicity receptors and their ligands. Immunol Cell Biol. 2014;92:221-229.

[43]

Pesce S, Tabellini G, Cantoni C, et al. B7-H6-mediated downregulation of NKp30 in NK cells contributes to ovarian carcinoma immune escape. OncoImmunology. 2015;4:e1001224.

[44]

Pinheiro PF, Justino GC, Marques MM. NKp30 - A prospective target for new cancer immunotherapy strategies. Br J Pharmacol. 2020;177:4563-4580.

[45]

Moretta L, Bottino C, Pende D, et al. Surface NK receptors and their ligands on tumor cells. Semin Immunol. 2006;18:151-158.

[46]

Westgaard IH, Berg SF, Vaage JT, et al. Rat NKp46 activates natural killer cell cytotoxicity and is associated with FcepsilonRIgamma and CD3zeta. J Leukoc Biol. 2004;76:1200-1206.

[47]

Platonova S, Cherfils-Vicini J, Damotte D, et al. Profound coordinated alterations of intratumoral NK cell phenotype and function in lung carcinoma. Cancer Res. 2011;71:5412-5422.

[48]

Fauriat C, Just-Landi S, Mallet F, et al. Deficient expression of NCR in NK cells from acute myeloid leukemia: evolution during leukemia treatment and impact of leukemia cells in NCRdull phenotype induction. Blood. 2007;109:323-330.

[49]

López-Botet M, Muntasell A, Vilches C. The CD94/NKG2C+ NK-cell subset on the edge of innate and adaptive immunity to human cytomegalovirus infection. Semin Immunol. 2014;26:145-151.

[50]

Peng H, Tian Z. Natural killer cell memory: progress and implications. Front Immunol. 2017;8:1143.

[51]

Liu LL, Landskron J, Ask EH, et al. Critical role of CD2 co-stimulation in adaptive natural killer cell responses revealed in NKG2C-deficient humans. Cell Rep. 2016;15:1088-1099.

[52]

Muntasell A, Pupuleku A, Cisneros E, et al. Relationship of NKG2C copy number with the distribution of distinct cytomegalovirus-induced adaptive NK cell subsets. J Immunol. 2016;196:3818-3827.

[53]

Chiu E, Felices M, Cichocki F, et al. Anti-NKG2C/IL-15/anti-CD33 killer engager directs primary and iPSC-derived NKG2C+ NK cells to target myeloid leukemia. Mol Ther. 2021;29:3410-3421.

[54]

Siemaszko J, Marzec-Przyszlak A, Bogunia-Kubik K. Activating NKG2C receptor: functional characteristics and current strategies in clinical applications. Arch Immunol Ther Exp (Warsz). 2023;71:9.

[55]

Tschan-Plessl A, Stern M, Schmied L, et al. Human cytomegalovirus infection enhances NK cell activity in vitro. Transplant Direct. 2016;2:e89.

[56]

Conlon KC, Lugli E, Welles HC, et al. Redistribution, hyperproliferation, activation of natural killer cells and CD8 T cells, and cytokine production during first-in-human clinical trial of recombinant human interleukin-15 in patients with cancer. J Clin Oncol. 2015;33:74-82.

[57]

Sim GC, Radvanyi L. The IL-2 cytokine family in cancer immunotherapy. Cytokine Growth Factor Rev. 2014;25:377-390.

[58]

Huenecke S, Zimmermann SY, Kloess S, et al. IL-2-driven regulation of NK cell receptors with regard to the distribution of CD16+ and CD16-subpopulations and in vivo influence after haploidentical NK cell infusion. J Immunother. 2010;33:200-210.

[59]

Waldmann TA. The shared and contrasting roles of interleukin-2 (IL-2) and IL-15 in the life and death of normal and neoplastic lymphocytes: implications for cancer therapy. Cancer Immunol Res. 2015;3:219-227.

[60]

Jiang Y, Chen M, Nie H, Yuan Y. PD-1 and PD-L1 in cancer immunotherapy: clinical implications and future considerations. Hum Vaccines Immunother. 2019;15:1111-1122.

[61]

Oyewole-Said D, Konduri V, Vazquez-Perez J, et al. Beyond T-cells: functional characterization of CTLA-4 expression in immune and non-immune cell types. Front Immunol. 2020;11:608024.

[62]

Quatrini L, Mariotti FR, Munari E, et al. The immune checkpoint PD-1 in natural killer cells: expression, function and targeting in tumour immunotherapy. Cancers. 2020;12:3285.

[63]

Tapia-Galisteo A, Álvarez-Vallina L, Sanz L. Bi-and trispecific immune cell engagers for immunotherapy of hematological malignancies. J Hematol Oncol. 2023;16:1-20.

[64]

Siegler JJ, Schmitt N, Pahl J, et al. P482: novel bispecific innate cell engager AFM28 for the treatment of CD123 positive acute myeloid leukemia and myelodysplastic syndrome. HemaSphere. 2022;6:381.

[65]

Huan T, Guan B, Li H, et al. Principles and current clinical landscape of NK cell engaging bispecific antibody against cancer. Hum Vaccines Immunother. 2023;19:2256904.

[66]

Reusch U, Burkhardt C, Fucek I, et al. A novel tetravalent bispecific TandAb (CD30/CD16A) efficiently recruits NK cells for the lysis of CD30+ tumor cells. mAbs. 2014;6:727-738.

[67]

Vallera DA, Felices M, McElmurry R, et al. IL15 trispecific killer engagers (TriKE) make natural killer cells specific to CD33+ targets while also inducing persistence, in vivo expansion, and enhanced function. Clin Cancer Res. 2016;22:3440-3450.

[68]

Kellner C, Bruenke J, Stieglmaier J, et al. A novel CD19-directed recombinant bispecific antibody derivative with enhanced immune effector functions for human leukemic cells. J Immunother. 2008;31:871-884.

[69]

Bargou R, Leo E, Zugmaier G, et al. Tumor regression in cancer patients by very low doses of a T cell-engaging antibody. Science. 2008;321:974-977.

[70]

Singer H, Kellner C, Lanig H, et al. Effective elimination of acute myeloid leukemic cells by recombinant bispecific antibody derivatives directed against CD33 and CD16. J Immunother. 2010;33:599-608.

[71]

Kügler M, Stein C, Kellner C, et al. A recombinant trispecific single-chain Fv derivative directed against CD123 and CD33 mediates effective elimination of acute myeloid leukaemia cells by dual targeting. Br J Haematol. 2010;150:574-586.

[72]

Zhou S, Liu M, Ren F, et al. The landscape of bispecific T cell engager in cancer treatment. Biomark Res. 2021;9:38.

[73]

Vallera DA, Oh F, Kodal B, et al. A HER2 tri-specific NK cell engager mediates efficient targeting of human ovarian cancer. Cancers. 2021;13:3994.

[74]

Zhang M, Lam KP, Xu S. Natural killer cell engagers (NKCEs): a new frontier in cancer immunotherapy. Front Immunol. 2023;14:1207276.

[75]

Runcie K, Budman DR, John V, Seetharamu N. Bi-specific and tri-specific antibodies-the next big thing in solid tumor therapeutics. Mol Med. 2018;24:50.

[76]

Demaria O, Gauthier L, Debroas G, Vivier E. Natural killer cell engagers in cancer immunotherapy: next generation of immuno-oncology treatments. Eur J Immunol. 2021;51:1934-1942.

[77]

Sivori S, Pende D, Bottino C, et al. NKp46 is the major triggering receptor involved in the natural cytotoxicity of fresh or cultured human NK cells. Correlation between surface density of NKp46 and natural cytotoxicity against autologous, allogeneic or xenogeneic target cells. Eur J Immunol. 1999;29:1656-1666.

[78]

Gauthier L, Virone-Oddos A, Beninga J, et al. Control of acute myeloid leukemia by a trifunctional NKp46-CD16a-NK cell engager targeting CD123. Nat Biotechnol. 2023;41:1296-1306.

[79]

Demaria O, Gauthier L, Vetizou M, et al. Antitumor immunity induced by antibody-based natural killer cell engager therapeutics armed with not-alpha IL-2 variant. Cell Rep Med. 2022;3:100783.

[80]

Zhang C, Hu Y, Shi C. Targeting natural killer cells for tumor immunotherapy. Front Immunol. 2020;11:60.

[81]

Kemper K, Sprick MR, de Bree M, et al. The AC133 epitope, but not the CD133 protein, is lost upon cancer stem cell differentiation. Cancer Res. 2010;70:719-729.

[82]

Schmohl JU, Felices M, Oh F, et al. Engineering of anti-CD133 trispecific molecule capable of inducing NK expansion and driving antibody-dependent cell-mediated cytotoxicity. Cancer Res Treat. 2017;49:1140-1152.

[83]

Schmohl JU, Felices M, Todhunter D, et al. Tetraspecific scFv construct provides NK cell mediated ADCC and self-sustaining stimuli via insertion of IL-15 as a cross-linker. Oncotarget. 2016;7:73830-73844.

[84]

Feldman EJ, Brandwein J, Stone R, et al. Phase III randomized multicenter study of a humanized anti-CD33 monoclonal antibody, lintuzumab, in combination with chemotherapy, versus chemotherapy alone in patients with refractory or first-relapsed acute myeloid leukemia. J Clin Oncol. 2005;23:4110-4116.

[85]

Morsink LM, Walter RB, Ossenkoppele GJ. Prognostic and therapeutic role of CLEC12A in acute myeloid leukemia. Blood Rev. 2019;34:26-33.

[86]

Larsen , Roug AS, Just T, et al. Expression of the hMICL in acute myeloid leukemia-a highly reliable disease marker at diagnosis and during follow-up. Cytometry B Clin Cytom. 2012;82B:3-8.

[87]

Arvindam US, van Hauten PMM, Schirm D, et al. A trispecific killer engager molecule against CLEC12A effectively induces NK-cell mediated killing of AML cells. Leukemia. 2021;35:1586-1596.

[88]

Greaves P, Gribben JG. The role of B7 family molecules in hematologic malignancy. Blood. 2013;121:734-744.

[89]

Li G, Quan Y, Che F, Wang L. B7-H3 in tumors: friend or foe for tumor immunity?. Cancer Chemother Pharmacol. 2018;81:245-253.

[90]

Vallera DA, Ferrone S, Kodal B, et al. NK-cell-mediated targeting of various solid tumors using a B7-H3 tri-specific killer engager in vitro and in vivo. Cancers. 2020;12:2659.

[91]

Li Y, Wu L, Liu Y, et al. A novel multifunctional anti-PD-L1-CD16a-IL15 induces potent cancer cell killing in PD-L1-positive tumour cells. Transl Oncol. 2022;21:101424.

[92]

Felices M, Warlick E, Juckett M, et al. 444 GTB-3550 tri-specific killer engager TriKETM drives NK cells expansion and cytotoxicity in acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS) patients. J Immunother Cancer. 2021;9:444.

[93]

Au KM, Park SI, Wang AZ. Trispecific natural killer cell nanoengagers for targeted chemoimmunotherapy. Sci Adv. 2020;6:eaba8564.

[94]

Conlon KC, Potter EL, Pittaluga S, et al. IL15 by continuous intravenous infusion to adult patients with solid tumors in a phase I trial induced dramatic NK-cell subset expansion. Clin Cancer Res. 2019;25:4945-4954.

[95]

Stein AS, Jongen-Lavrencic M, Garciaz S, et al. A first-in-human study of CD123 NK cell engager SAR443579 in relapsed or refractory acute myeloid leukemia, B-cell acute lymphoblastic leukemia, or high-risk myelodysplasia. J Clin Oncol. 2023;41:7005-7005.

[96]

Safran H, Cassier PA, Vicier C, et al. Phase 1/2 study of DF1001, a novel tri-specific, NK cell engager therapy targeting HER2, in patients with advanced solid tumors: phase 1 DF1001 monotherapy dose-escalation results. J Clin Oncol. 2023;41:2508-2508.

[97]

Wang X, Xiong H, Ning Z. Implications of NKG2A in immunity and immune-mediated diseases. Front Immunol. 2022;13:960852.

[98]

van Hall T, André P, Horowitz A, et al. Monalizumab: inhibiting the novel immune checkpoint NKG2A. J Immunother Cancer. 2019;7:263.

[99]

Hambach J, Fumey W, Stähler T, et al. Half-life extended nanobody-based CD38-specific bispecific killercell engagers induce killing of multiple myeloma cells. Front Immunol. 2022;13:838406.

[100]

Moreau P, Pylypenko H, Grosicki S, et al. Subcutaneous versus intravenous administration of bortezomib in patients with relapsed multiple myeloma: a randomised, phase 3, non-inferiority study. Lancet Oncol. 2011;12:431-440.

RIGHTS & PERMISSIONS

2024 The Author(s). Clinical and Translational Medicine published by John Wiley & Sons Australia, Ltd on behalf of Shanghai Institute of Clinical Bioinformatics.

AI Summary AI Mindmap
PDF

146

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/