Prediction of COVID-19 severity using machine learning

Kanita Karaduzovic-Hadziabdic , Muhamed Adilovic , Lu Zhang , Andrew I Lumley , Pranay Shah , Muhammad Shoaib , Venkata Satagopam , Prashant Kumar Srivastava , Costanza Emanueli , Simona Greco , Alisia Madè , Teresa Padro , Pedro Domingo , Mitja Lustrek , Markus Scholz , Maciej Rosolowski , Marko Jordan , Bettina Benczik , Bence Ágg , Péter Ferdinandy , Andrew H Baker , Guy Fagherazzi , Markus Ollert , Joanna Michel , Gabriel Sanchez , Hüseyin Firat , Timo Brandenburger , Fabio Martelli , Lina Badimon , Yvan Devaux

Clinical and Translational Medicine ›› 2024, Vol. 14 ›› Issue (10) : e70042

PDF
Clinical and Translational Medicine ›› 2024, Vol. 14 ›› Issue (10) : e70042 DOI: 10.1002/ctm2.70042
LETTER TO THE JOURNAL

Prediction of COVID-19 severity using machine learning

Author information +
History +
PDF

Cite this article

Download citation ▾
Kanita Karaduzovic-Hadziabdic, Muhamed Adilovic, Lu Zhang, Andrew I Lumley, Pranay Shah, Muhammad Shoaib, Venkata Satagopam, Prashant Kumar Srivastava, Costanza Emanueli, Simona Greco, Alisia Madè, Teresa Padro, Pedro Domingo, Mitja Lustrek, Markus Scholz, Maciej Rosolowski, Marko Jordan, Bettina Benczik, Bence Ágg, Péter Ferdinandy, Andrew H Baker, Guy Fagherazzi, Markus Ollert, Joanna Michel, Gabriel Sanchez, Hüseyin Firat, Timo Brandenburger, Fabio Martelli, Lina Badimon, Yvan Devaux. Prediction of COVID-19 severity using machine learning. Clinical and Translational Medicine, 2024, 14(10): e70042 DOI:10.1002/ctm2.70042

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

World Health Organization. WHO COVID-19 Dashboard. data.who.int. http://data.who.int/dashboards/covid19/cases

[2]

Thaweethai T, Jolley SE, Karlson EW, et al. Development of a definition of postacute sequelae of SARS-CoV-2 infection. JAMA. 2023; 329: 1934-1946.

[3]

Caporali A, Anwar M, Devaux Y, et al. Non-coding RNAs as therapeutic targets and biomarkers in ischaemic heart disease. Nat Rev Cardiol 2024: 1-18,

[4]

Badimon L, Devaux Y. Transcriptomics research to improve cardiovascular healthcare. Eur Heart J. 2020; 41: 3296-3298.

[5]

Gomes CPC, Ágg B, Andova A, et al. Catalyzing transcriptomics research in cardiovascular disease: the CardioRNA COST Action CA17129. Noncoding RNA. 2019; 5: 31.

[6]

Robinson EL, Emanueli C, Martelli F, et al. Leveraging non-coding RNAs to fight cardiovascular disease: the EU-CardioRNA network. Eur Heart J. 2021; 42: 4881-4883.

[7]

Badimon L, Robinson EL, Jusic A, et al. Cardiovascular RNA markers and artificial intelligence may improve COVID-19 outcome: a position paper from the EU-CardioRNA COST Action CA17129. Cardiovasc Res. 2021; 117, 1823-1840.

[8]

Firat H., Zhang L, Baksi S, et al. FIMICS: a panel of long noncoding RNAs for cardiovascular conditions. Heliyon. 2023; 9.

[9]

Karaduzović-Hadžiabdić K, Peters A. Chapter 15 – artificial intelligence in clinical decision-making for diagnosis of cardiovascular disease using epigenetics mechanisms. In Devaux Y, Robinson EL, eds., Epigenetics in Cardiovascular Disease, Vol. 24. Academic Press; 2021: 327-345.

[10]

Devaux Y, Zhang L, Lumley AI, et al. Development of a long noncoding RNA-based machine learning model to predict COVID-19 in-hospital mortality. Nat Commun. 2024; 15: 4259

RIGHTS & PERMISSIONS

2024 The Author(s). Clinical and Translational Medicine published by John Wiley & Sons Australia, Ltd on behalf of Shanghai Institute of Clinical Bioinformatics.

AI Summary AI Mindmap
PDF

89

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/