Single-cell multi-modal chromatin profiles revealing epigenetic regulations of cells in hepatocellular carcinoma

Chunqing Wang , Waidong Huang , Yu Zhong , Xuanxuan Zou , Shang Liu , Jie Li , Yunfan Sun , Kaiqian Zhou , Xi Chen , Zihao Li , Shanshan Wang , Yaling Huang , Yinqi Bai , Jianhua Yin , Xin Jin , Shiping Liu , Yue Yuan , Qiuting Deng , Miaomiao Jiang , Chuanyu Liu , Longqi Liu , Xun Xu , Liang Wu

Clinical and Translational Medicine ›› 2024, Vol. 14 ›› Issue (9) : e70000

PDF
Clinical and Translational Medicine ›› 2024, Vol. 14 ›› Issue (9) : e70000 DOI: 10.1002/ctm2.70000
RESEARCH ARTICLE

Single-cell multi-modal chromatin profiles revealing epigenetic regulations of cells in hepatocellular carcinoma

Author information +
History +
PDF

Abstract

•scCPA-Tag offers a highly efficient and high throughput technique to simultaneously profile histone modification and chromatin accessibility within a single cell.

•scCPA-Tag enables to uncover multiple epigenetic modification features of cellular compositions within tumor tissues.

•scCPA-Tag facilitates the exploration of the epigenetic landscapes of heterogeneous cell types and provides the mechanisms governing gene expression regulation.

Keywords

chromatin accessibility / epigenomics / hepatocellular carcinoma / histone modifications / multiomics / single-cell sequencing

Cite this article

Download citation ▾
Chunqing Wang, Waidong Huang, Yu Zhong, Xuanxuan Zou, Shang Liu, Jie Li, Yunfan Sun, Kaiqian Zhou, Xi Chen, Zihao Li, Shanshan Wang, Yaling Huang, Yinqi Bai, Jianhua Yin, Xin Jin, Shiping Liu, Yue Yuan, Qiuting Deng, Miaomiao Jiang, Chuanyu Liu, Longqi Liu, Xun Xu, Liang Wu. Single-cell multi-modal chromatin profiles revealing epigenetic regulations of cells in hepatocellular carcinoma. Clinical and Translational Medicine, 2024, 14(9): e70000 DOI:10.1002/ctm2.70000

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

RodriguezJ, RenG, DayCR, Zhao K, ChowCC, LarsonDR. Intrinsic dynamics of a human gene reveal the basis of expression heterogeneity. Cell. 2019; 176(1-2): 213-226.e18.

[2]

ClarkSJ, LeeHJ, SmallwoodSA, Kelsey G, ReikW. Single-cell epigenomics: powerful new methods for understanding gene regulation and cell identity. Genome Biol. 2016; 17: 72.

[3]

JinW, TangQ, WanM, et al. Genome-wide detection of DNase I hypersensitive sites in single cells and FFPE tissue samples. Nature. 2015; 528(7580): 142-146.

[4]

CarterB, ZhaoK. The epigenetic basis of cellular heterogeneity. Nat Rev Genet. 2021; 22(4): 235-250.

[5]

BuenrostroJD, WuB, LitzenburgerUM, et al. Single-cell chromatin accessibility reveals principles of regulatory variation. Nature. 2015; 523(7561): 486-490.

[6]

BartosovicM, KabbeM, Castelo-BrancoG. Single-cell CUT&Tag profiles histone modifications and transcription factors in complex tissues. Nat Biotechnol. 2021; 39(7): 825-835.

[7]

ZhangQ, MaS, LiuZ, et al. Droplet-based bisulfite sequencing for high-throughput profiling of single-cell DNA methylomes. Nat Commun. 2023; 14(1): 4672.

[8]

SchwopeR, MagrisG, MiculanM, et al. Open chromatin in grapevine marks candidate CREs and with other chromatin features correlates with gene expression. Plant J. 2021; 107(6): 1631-1647.

[9]

JanssensDH, OttoDJ, MeersMP, Setty M, AhmadK, HenikoffS. CUT&Tag2for1: a modified method for simultaneous profiling of the accessible and silenced regulome in single cells. Genome Biol. 2022; 23(1): 81.

[10]

TedescoM, Giannese F, LazarevicD, et al. Chromatin Velocity reveals epigenetic dynamics by single-cell profiling of heterochromatin and euchromatin. Nat Biotechnol. 2022; 40(2): 235-244.

[11]

BartosovicM, Castelo-Branco G. Multimodal chromatin profiling using nanobody-based single-cell CUT&Tag. Nat Biotechnol. 2023; 41(6): 794-805.

[12]

HanL, WeiX, LiuC, et al. Cell transcriptomic atlas of the non-human primate Macaca fascicularis. Nature. 2022; 604(7907): 723-731. doi:10.1038/s41586-022-04587-3

[13]

YuY, WeiX, DengQ, et al. Single-nucleus chromatin accessibility landscape reveals diversity in regulatory regions across distinct adult rat cortex. Front Mol Neurosci. 2021; 14: 651355.

[14]

LiH, DurbinR. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009; 25(14): 1754-1760.

[15]

LiH, Handsaker B, WysokerA, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009; 25(16): 2078-2079.

[16]

ZhangY, LiuT, MeyerCA, et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 2008; 9(9): R137.

[17]

MeersMP, Tenenbaum D, HenikoffS. Peak calling by sparse enrichment analysis for CUT&RUN chromatin profiling. Epigenetics Chromatin. 2019; 12(1): 42.

[18]

YuG, WangLG, HeQY. ChIPseeker: an R/Bioconductor package for ChIP peak annotation, comparison and visualization. Bioinformatics. 2015; 31(14): 2382-2383.

[19]

ShiQ, LiuS, KristiansenK, LiuL. The FASTQ+ format and PISA. Bioinformatics. 2022; 38(19): 4639-4642.

[20]

QuinlanAR, HallIM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010; 26(6): 841-842.

[21]

RamirezF, DundarF, DiehlS, Gruning BA, MankeT. deepTools: a flexible platform for exploring deep-sequencing data. Nucleic Acids Res. 2014; 42(Web Server issue): W187-W191.

[22]

GranjaJM, CorcesMR, PierceSE, et al. ArchR is a scalable software package for integrative single-cell chromatin accessibility analysis. Nat Genet. 2021; 53(3): 403-411.

[23]

WuT, HuE, XuS, et al. clusterProfiler 4.0: a universal enrichment tool for interpreting omics data. Innovation (Camb). 2021; 2(3): 100141.

[24]

Kaya-OkurHS, WuSJ, CodomoCA, et al. CUT&Tag for efficient epigenomic profiling of small samples and single cells. Nat Commun. 2019; 10(1): 1930.

[25]

ConsortiumEP. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012; 489(7414): 57-74.

[26]

ZhuQ, ZhaoX, ZhangY, et al. Single cell multi-omics reveal intra-cell-line heterogeneity across human cancer cell lines. Nat Commun. 2023; 14(1): 8170.

[27]

PaninaY, Germond A, MasuiS, WatanabeTM. Validation of common housekeeping genes as reference for qPCR gene expression analysis during iPS reprogramming process. Scientific Reports. 2018; 8(1): 8716.

[28]

GutierrezL, Caballero N, Fernandez-CallejaL, KarkouliaE, Strouboulis J. Regulation of GATA1 levels in erythropoiesis. IUBMB Life. 2020; 72(1): 89-105.

[29]

GillinderKR, MagorG, BellC, Ilsley MD, HuangS, PerkinsA. KLF1 acts as a pioneer transcription factor to open chromatin and facilitate recruitment of GATA1. Blood. 2018; 132(1): 501-501.

[30]

LarruceaS, ButtaN, Arias-SalgadoEG, Alonso-MartinS, AyusoMS, ParrillaR. Expression of podocalyxin enhances the adherence, migration, and intercellular communication of cells. Exp Cell Res. 2008; 314(10): 2004-2015.

[31]

CortonM, Avila-Fernandez A, CampelloL, et al. Identification of the photoreceptor transcriptional co-repressor SAMD11 as novel cause of autosomal recessive retinitis pigmentosa. Sci Rep. 2016; 6: 35370.

[32]

SunY, WuL, ZhongY, et al. Single-cell landscape of the ecosystem in early-relapse hepatocellular carcinoma. Cell. 2021; 184(2): 404-421. e16.

[33]

MuhlL, GenoveG, LeptidisS, et al. Single-cell analysis uncovers fibroblast heterogeneity and criteria for fibroblast and mural cell identification and discrimination. Nat Commun. 2020; 11(1): 3953.

[34]

MullerAM, Hermanns MI, SkrzynskiC, NesslingerM, MullerKM, KirkpatrickCJ. Expression of the endothelial markers PECAM-1, vWf, and CD34 in vivo and in vitro. Exp Mol Pathol. 2002; 72(3): 221-229.

[35]

MuX, Español-Suñer R, MederackeI, et al. Hepatocellular carcinoma originates from hepatocytes and not from the progenitor/biliary compartment. J Clin Invest. 2015; 125(10): 3891-3903.

[36]

GaillardI, Rouquier S, GiorgiD. Olfactory receptors. Cell Mol Life Sci. 2004; 61(4): 456-469.

[37]

TaylorHS. The role of HOX genes in human implantation. Hum Reprod Update. 2000; 6(1): 75-79.

[38]

LiZ, JuX, SilveiraPA, et al. CD83: activation marker for antigen presenting cells and its therapeutic potential. Front Immunol. 2019; 10: 1312.

[39]

MeiJ, JiangG, ChenY, et al. HLA class II molecule HLA-DRA identifies immuno-hot tumors and predicts the therapeutic response to anti-PD-1 immunotherapy in NSCLC. BMC Cancer. 2022; 22(1): 738.

[40]

PandeyR, ZhouM, IslamS, et al. Carcinoembryonic antigen cell adhesion molecule 6 (CEACAM6) in pancreatic ductal adenocarcinoma (PDA): an integrative analysis of a novel therapeutic target. Sci Rep. 2019; 9(1): 18347.

[41]

XuD, LiT, WangR, Mu R. Expression and pathogenic analysis of integrin family genes in systemic sclerosis. Front Med (Lausanne). 2021; 8: 674523.

[42]

CraigMP, Sumanas S. ETS transcription factors in embryonic vascular development. Angiogenesis. 2016; 19(3): 275-285.

[43]

SuF, GengJ, LiX, et al. SP1 promotes tumor angiogenesis and invasion by activating VEGF expression in an acquired trastuzumab-resistant ovarian cancer model. Oncol Rep. 2017; 38(5): 2677-2684.

[44]

YaoD, PengS, DaiC. The role of hepatocyte nuclear factor 4alpha in metastatic tumor formation of hepatocellular carcinoma and its close relationship with the mesenchymal-epithelial transition markers. BMC Cancer. 2013; 13: 432.

[45]

LeeJB, Werbowetski-Ogilvie TE, LeeJH, et al. Notch-HES1 signaling axis controls hemato-endothelial fate decisions of human embryonic and induced pluripotent stem cells. Blood. 2013; 122(7): 1162-1173.

[46]

IravaniO, BayB-H, YipGW-C. Silencing HS6ST3 inhibits growth and progression of breast cancer cells through suppressing IGF1R and inducing XAF1. Experimental Cell Research. 2017; 350(2): 380-389.

[47]

SulakheD, D’Souza M, WangS, et al. Exploring the functional impact of alternative splicing on human protein isoforms using available annotation sources. Brief Bioinform. 2019; 20(5): 1754-1768.

[48]

RockeyDC, Weymouth N, ShiZ. Smooth muscle alpha actin (Acta2) and myofibroblast function during hepatic wound healing. PLoS One. 2013; 8(10): e77166.

[49]

RockeyDC, DuQ, WeymouthND, Shi Z. Smooth muscle alpha-Actin deficiency leads to decreased liver fibrosis via impaired cytoskeletal signaling in hepatic stellate cells. Am J Pathol. 2019; 189(11): 2209-2220.

[50]

MoralesJ, PujarS, LovelandJE, et al. A joint NCBI and EMBL-EBI transcript set for clinical genomics and research. Nature. 2022; 604(7905): 310-315.

[51]

WangSS, EsplinED, LiJL, et al. Alterations of the PPP2R1B gene in human lung and colon cancer. Science. 1998; 282(5387): 284-287.

[52]

LiJ, LiMH, WangTT, et al. SLC38A4 functions as a tumour suppressor in hepatocellular carcinoma through modulating Wnt/beta-catenin/MYC/HMGCS2 axis. Br J Cancer. 2021; 125(6): 865-876.

[53]

SunHM, MiYS, YuFD, et al. SERPINA4 is a novel independent prognostic indicator and a potential therapeutic target for colorectal cancer. Am J Cancer Res. 2016; 6(8): 1636-1649.

[54]

ZengY, QinT, FlaminiV, et al. Identification of DHX36 as a tumour suppressor through modulating the activities of the stress-associated proteins and cyclin-dependent kinases in breast cancer. Am J Cancer Res. 2020; 10(12): 4211-4233.

[55]

ChenS, LiY, ZhuY, et al. SERPINE1 overexpression promotes malignant progression and poor prognosis of gastric cancer. J Oncol. 2022; 2022: 2647825.

[56]

LiM, XiaS, ShiP. DPM1 expression as a potential prognostic tumor marker in hepatocellular carcinoma. Peer J. 2020; 8: e10307.

[57]

LiangYK, LinHY, DouXW, et al. MiR-221/222 promote epithelial-mesenchymal transition by targeting Notch3 in breast cancer cell lines. NPJ Breast Cancer. 2018; 4: 20.

[58]

BabicAM, Kireeva ML, KolesnikovaTV, LauLF. CYR61, a product of a growth factor-inducible immediate early gene, promotes angiogenesis and tumor growth. Proc Natl Acad Sci U S A. 1998; 95(11): 6355-6360.

[59]

HuangYT, LanQ, LorussoG, Duffey N, RueggC. The matricellular protein CYR61 promotes breast cancer lung metastasis by facilitating tumor cell extravasation and suppressing anoikis. Oncotarget. 2017; 8(6): 9200-9215.

[60]

HuangY, MaJ, YangC, et al. METTL1 promotes neuroblastoma development through m7G tRNA modification and selective oncogenic gene translation. Biomarker Research. 2022; 10(1): 68.

[61]

WangY, BaoG, ZhangM, et al. CRB2 enhances malignancy of glioblastoma via activation of the NF-kappaB pathway. Exp Cell Res. 2022; 414(1): 113077.

[62]

PiaoXM, JeongP, YanC, et al. A novel tumor suppressing gene, ARHGAP9, is an independent prognostic biomarker for bladder cancer. Oncol Lett. 2020; 19(1): 476-486. doi:10.3892/ol.2019.11123

[63]

ZhangH, TangQF, SunMY, et al. ARHGAP9 suppresses the migration and invasion of hepatocellular carcinoma cells through up-regulating FOXJ2/E-cadherin. Cell Death Dis. 2018; 9(9): 916.

[64]

ShenYL, GanY, GaoHF, et al. TNFSF9 exerts an inhibitory effect on hepatocellular carcinoma. J Dig Dis. 2017; 18(7): 395-403.

[65]

AnQ, LiuT, WangMY, et al. KRT7 promotes epithelial-mesenchymal transition in ovarian cancer via the TGF-beta/Smad2/3 signaling pathway. Oncol Rep. 2021; 45(2): 481-492.

[66]

MiyakeM, Morizawa Y, HoriS, et al. Diagnostic and prognostic role of urinary collagens in primary human bladder cancer. Cancer Sci. 2017; 108(11): 2221-2228.

[67]

LeeCL, LeeM, LeeJY, et al. transcriptomic profiling analysis of castration-resistant prostate cancer cell lines treated with chronic intermittent hypoxia. Cancers (Basel). 2022; 14(16): 3959.

[68]

MitraV, Metcalf J. Metabolic functions of the liver. Anaesth Intensive Care Med. 2009; 10(7): 334-335.

[69]

FarzanehZ, Vosough M, AgarwalT, FarzanehM. Critical signaling pathways governing hepatocellular carcinoma behavior; small molecule-based approaches. Cancer Cell Int. 2021; 21(1): 208.

[70]

TangD, TaoD, FangY, Deng C, XuQ, ZhouJ. TNF-alpha promotes invasion and metastasis via NF-kappa B pathway in oral squamous cell carcinoma. Med Sci Monit Basic Res. 2017; 23: 141-149.

[71]

GretenFR, Grivennikov SI. Inflammation and cancer: triggers, mechanisms, and consequences. Immunity. 2019; 51(1): 27-41.

[72]

KimLC, CookRS, ChenJ. mTORC1 and mTORC2 in cancer and the tumor microenvironment. Oncogene. 2017; 36(16): 2191-2201.

[73]

Cancer Genome Atlas Research Network, Electronic address: wheeler@bcm.edu, Cancer Genome Atlas Research Network. Comprehensive and integrative genomic characterization of hepatocellular carcinoma. Cell. 2017; 169(7): 1327-1341. e23. doi:10.1016/j.cell.2017.05.046

[74]

GaoQ, ZhuH, DongL, et al. Integrated proteogenomic characterization of HBV-related hepatocellular carcinoma. Cell. 2019; 179(5): 1240.

[75]

MeersMP, LlagasG, JanssensDH, Codomo CA, HenikoffS. Multifactorial profiling of epigenetic landscapes at single-cell resolution using MulTI-Tag. Nat Biotechnol. 2023; 41(5): 708-716.

[76]

LiR, GrimmSA, WadePA. CUT&Tag-BS for simultaneous profiling of histone modification and DNA methylation with high efficiency and low cost. Cell Rep Methods. 2021; 1(8): 100118.

[77]

GuoX, ChenF, GaoF, et al. CNSA: a data repository for archiving omics data. Database (Oxford). 2020; 2. doi:10.1093/database/baaa055

[78]

ChenFZ, YouLJ, YangF, et al. CNGBdb: China National GeneBank DataBase. Yi Chuan. 2020; 42(8): 799-809. doi:10.16288/j.yczz.20-080

RIGHTS & PERMISSIONS

2024 The Author(s). Clinical and Translational Medicine published by John Wiley & Sons Australia, Ltd on behalf of Shanghai Institute of Clinical Bioinformatics.

AI Summary AI Mindmap
PDF

112

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/