Multi-omics integration reveals the oncogenic role of eccDNAs in diffuse large B-cell lymphoma through STING signalling

Zijuan Wu , Wei Zhang , Luqiao Wang , Jiayan Leng , Yongle Li , Zhou Fan , Mengtao Zhan , Lei Cao , Yongning Jiang , Yan Jiang , Bing Sun , Jianxin Fu , Jianyong Li , Wenyu Shi , Hui Jin

Clinical and Translational Medicine ›› 2024, Vol. 14 ›› Issue (8) : e1815

PDF
Clinical and Translational Medicine ›› 2024, Vol. 14 ›› Issue (8) : e1815 DOI: 10.1002/ctm2.1815
RESEARCH ARTICLE

Multi-omics integration reveals the oncogenic role of eccDNAs in diffuse large B-cell lymphoma through STING signalling

Author information +
History +
PDF

Abstract

•EccDNAs induced by DNA damage exert an oncogenic role in DLBCL via activating the STING signalling independently of cGAS.

•The combined treatment of chemotherapeutic drugs with STING inhibitor significantly delayed the tumor progression, providing new insights into the therapeutic strategy for patients with DLBCL, particularly the relapsed and/or refractory (R/R) ones.

Keywords

Diffuse large B-cell lymphoma / DNA damage / EccDNAs / STING signalling

Cite this article

Download citation ▾
Zijuan Wu, Wei Zhang, Luqiao Wang, Jiayan Leng, Yongle Li, Zhou Fan, Mengtao Zhan, Lei Cao, Yongning Jiang, Yan Jiang, Bing Sun, Jianxin Fu, Jianyong Li, Wenyu Shi, Hui Jin. Multi-omics integration reveals the oncogenic role of eccDNAs in diffuse large B-cell lymphoma through STING signalling. Clinical and Translational Medicine, 2024, 14(8): e1815 DOI:10.1002/ctm2.1815

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

SehnLH, SallesG. Diffuse large B-cell lymphoma. N Engl J Med. 2021;384(9):842-858.

[2]

WästerlidT, Harrysson S, AnderssonTM, et al. Outcome and determinants of failure to complete primary R-CHOP treatment for reasons other than non-response among patients with diffuse large B-cell lymphoma. Am J Hematol. 2020;95(7):740-748.

[3]

FriedbergJW. Relapsed/refractory diffuse large B-cell lymphoma. Hematology (Am Soc Hematol Educ Program). 2011;2011:498-505.

[4]

ShaoR, LiuC, XueR, et al. Tumor-derived exosomal ENO2 modulates polarization of tumor-associated macrophages through reprogramming glycolysis to promote progression of diffuse large B-cell lymphoma. Int J Biol Sci. 2024;20(3):848-863.

[5]

WangH, ShaoR, LiuW, TangH, LuY. Identification of a prognostic metabolic gene signature in diffuse large B-cell lymphoma. J Cell Mol Med. 2021;25(14):7066-7077.

[6]

AbbasiAF, AsimMN, AhmedS, Dengel A. Long extrachromosomal circular DNA identification by fusing sequence-derived features of physicochemical properties and nucleotide distribution patterns. Sci Rep. 2024;14(1):9466.

[7]

VogtN, GibaudA, LemoineF, de la Grange P, DebatisseM, MalfoyB. Amplicon rearrangements during the extrachromosomal and intrachromosomal amplification process in a glioma. Nucleic Acids Res. 2014;42(21):13194-131205.

[8]

TurnerKM, Deshpande V, BeyterD, et al. Extrachromosomal oncogene amplification drives tumour evolution and genetic heterogeneity. Nature. 2017;543(7643):122-125.

[9]

YiE, GujarAD, GuthrieM, et al. Live-cell imaging shows uneven segregation of extrachromosomal DNA elements and transcriptionally active extrachromosomal DNA hubs in cancer. Cancer Discov. 2022;12(2):468-483.

[10]

LiR, WangY, LiJ, ZhouX. Extrachromosomal circular DNA (eccDNA):an emerging star in cancer. Biomark Res. 2022;10(1):53.

[11]

DeshpandeV, Luebeck J, NguyenND, et al. Exploring the landscape of focal amplifications in cancer using AmpliconArchitect. Nat Commun. 2019;10(1):392.

[12]

LingX, HanY, MengJ, et al. Small extrachromosomal circular DNA (eccDNA):major functions in evolution and cancer. Mol Cancer. 2021;20(1):113.

[13]

HopfnerKP, Hornung V. Molecular mechanisms and cellular functions of cGAS-STING signalling. Nat Rev Mol Cell Biol. 2020;21(9):501-521.

[14]

DecoutA, KatzJD, VenkatramanS, AblasserA. The cGAS-STING pathway as a therapeutic target in inflammatory diseases. Nat Rev Immunol. 2021;21(9):548-569.

[15]

SamsonN, Ablasser A. The cGAS-STING pathway and cancer. Nat Cancer. 2022;3(12):1452-1463.

[16]

KwonJ, Bakhoum SF. The Cytosolic DNA-Sensing cGAS-STING Pathway in Cancer. Cancer Discov. 2020;10(1):26-39.

[17]

KaNL, ParkMK, KimSS, et al. NR1D1 stimulates antitumor immune responses in breast cancer by activating cGAS-STING signaling. Cancer Res. 2023.

[18]

LiuH, ZhangH, WuX, et al. Nuclear cGAS suppresses DNA repair and promotes tumorigenesis. Nature. 2018;563(7729):131-136.

[19]

BakhoumSF, NgoB, LaughneyAM, et al. Chromosomal instability drives metastasis through a cytosolic DNA response. Nature. 2018;553(7689):467-472.

[20]

HuJ, Sánchez-Rivera FJ, WangZ, et al. STING inhibits the reactivation of dormant metastasis in lung adenocarcinoma. Nature. 2023;616(7958):806-813.

[21]

DillonLW, KumarP, ShibataY, et al. Production of extrachromosomal MicroDNAs is linked to mismatch repair pathways and transcriptional activity. Cell Rep. 2015;11(11):1749-1759.

[22]

KimH, NguyenNP, TurnerK, et al. Extrachromosomal DNA is associated with oncogene amplification and poor outcome across multiple cancers. Nat Genet. 2020;52(9):891-897.

[23]

NathansonDA, GiniB, MottahedehJ, et al. Targeted therapy resistance mediated by dynamic regulation of extrachromosomal mutant EGFR DNA. Science. 2014;343(6166):72-76.

[24]

NikolaevS, Santoni F, GarieriM, et al. Extrachromosomal driver mutations in glioblastoma and low-grade glioma. Nat Commun. 2014;5:5690.

[25]

LuebeckJ, NgAWT, GalipeauPC, et al. Extrachromosomal DNA in the cancerous transformation of Barrett’s oesophagus. Nature. 2023;616(7958):798-805.

[26]

ChenT, XuZG, LuoJ, et al. NSUN2 is a glucose sensor suppressing cGAS/STING to maintain tumorigenesis and immunotherapy resistance. Cell Metab. 2023;35(10):1782-1798.

[27]

FrittoliE, Palamidessi A, IannelliF, et al. Tissue fluidification promotes a cGAS-STING cytosolic DNA response in invasive breast cancer. Nat Mater. 2023;22(5):644-655.

[28]

GulenMF, SamsonN, KellerA, et al. cGAS-STING drives ageing-related inflammation and neurodegeneration. Nature. 2023;620(7973):374-380.

[29]

LiJ, HubiszMJ, EarlieEM, et al. Non-cell-autonomous cancer progression from chromosomal instability. Nature. 2023.

[30]

EluardB, Nuan-Aliman S, FaumontN, et al. The alternative RelB NF-κB subunit is a novel critical player in diffuse large B-cell lymphoma. Blood. 2022;139(3):384-398.

[31]

CarrM, MamandS, ChapmanKL, Perrior T, WagnerSD. IKKϵ and TBK1 in diffuse large B-cell lymphoma: a possible mechanism of action of an IKKϵ/TBK1 inhibitor to repress NF-κB and IL-10 signalling. J Cell Mol Med. 2020;24(19):11573-11582.

[32]

ZhaoQ, FuW, JiangH, et al. Clinicopathological implications of nuclear factor κB signal pathway activation in diffuse large B-cell lymphoma. Hum Pathol. 2015;46(4):524-531.

[33]

NgoVN, YoungRM, SchmitzR, et al. Oncogenically active MYD88 mutations in human lymphoma. Nature. 2011;470(7332):115-119.

[34]

EsmerayE, Küçük C. Genetic alterations in B cell lymphoma subtypes as potential biomarkers for noninvasive diagnosis, prognosis, therapy, and disease monitoring. Turk J Biol = Turk biyoloji dergisi. 2020;44(1):1-14.

[35]

LiK, LiuY, XuZ, et al. Avian oncogenic herpesvirus antagonizes the cGAS-STING DNA-sensing pathway to mediate immune evasion. PLoS Pathog. 2019;15(9):e1007999.

[36]

LongY, GuoJ, ChenJ, et al. GPR162 activates STING dependent DNA damage pathway as a novel tumor suppressor and radiation sensitizer. Signal Transduct Targeted Ther. 2023;8(1):48.

[37]

DunphyG, Flannery SM, AlmineJF, et al. Non-canonical activation of the DNA sensing adaptor STING by ATM and IFI16 mediates NF-κB signaling after nuclear DNA damage. Mol Cell. 2018;71(5):745-760.

[38]

DahalLN, DouL, HussainK, et al. STING activation reverses lymphoma-mediated resistance to antibody immunotherapy. Cancer Res. 2017;77(13):3619-3631.

[39]

LuoJ, PangS, HuiZ, et al. Blocking Tim-3 enhances the anti-tumor immunity of STING agonist ADU-S100 by unleashing CD4+T cells through regulating type 2 conventional dendritic cells. Theranostics. 2023;13(14):4836-4857.

[40]

Meric-BernstamF, SweisRF, HodiFS, et al. Phase I dose-escalation trial of MIW815 (ADU-S100), an intratumoral STING agonist, in patients with advanced/metastatic solid tumors or lymphomas. Clin Cancer Res. 2022;28(4):677-688.

[41]

Meric-BernstamF, SweisRF, KasperS, et al. Combination of the STING agonist MIW815 (ADU-S100) and PD-1 inhibitor spartalizumab in advanced/metastatic solid tumors or lymphomas: an open-label, multicenter, phase Ib study. Clin Cancer Res. 2023;29(1):110-121.

[42]

MiyagiS, Watanabe T, HaraY, et al. A STING inhibitor suppresses EBV-induced B cell transformation and lymphomagenesis. Cancer Sci. 2021;112(12):5088-5099.

[43]

WangY, WangM, DjekidelMN, et al. eccDNAs are apoptotic products with high innate immunostimulatory activity. Nature. 2021;599(7884):308-314.

[44]

BarrioL, GasparAE, MuzzopappaM, et al. Chromosomal instability-induced cell invasion through caspase-driven DNA damage. Curr Biol. 2023.

[45]

BakhoumSF, Danilova OV, KaurP, LevyNB, Compton DA. Chromosomal instability substantiates poor prognosis in patients with diffuse large B-cell lymphoma. Clin Cancer Res. 2011;17(24):7704-7711.

[46]

KimDY, NamJ, ChungJS, et al. Predictive parameters of febrile neutropenia and clinical significance of G-CSF receptor signaling pathway in the development of neutropenia during R-CHOP chemotherapy with prophylactic pegfilgrastim in patients with diffuse large B-Cell lymphoma. Cancer Res Treat. 2022;54(4):1256-1267.

[47]

NanjangudG, RaoPH, HegdeA, et al. Spectral karyotyping identifies new rearrangements, translocations, and clinical associations in diffuse large B-cell lymphoma. Blood. 2002;99(7):2554-2561.

[48]

PolettoS, NovoM, ParuzzoL, Frascione PMM, VitoloU. Treatment strategies for patients with diffuse large B-cell lymphoma. Cancer Treat Rev. 2022;110:102443.

[49]

ZhangS, ZhouT, WangZ, et al. Post-translational modifications of PCNA in control of DNA synthesis and DNA damage tolerance-the implications in carcinogenesis. Int J Biol Sci. 2021;17(14):4047-4059.

RIGHTS & PERMISSIONS

2024 The Author(s). Clinical and Translational Medicine published by John Wiley & Sons Australia, Ltd on behalf of Shanghai Institute of Clinical Bioinformatics.

AI Summary AI Mindmap
PDF

136

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/