PUS7-dependent pseudouridylation of ALKBH3 mRNA inhibits gastric cancer progression

Yongxia Chang , Hao Jin , Yun Cui , Feng Yang , Kanghua Chen , Wenjun Kuang , Chunxiao Huo , Zhangqi Xu , Ya Li , Aifu Lin , Bo Yang , Wei Liu , Shanshan Xie , Tianhua Zhou

Clinical and Translational Medicine ›› 2024, Vol. 14 ›› Issue (8) : e1811

PDF
Clinical and Translational Medicine ›› 2024, Vol. 14 ›› Issue (8) : e1811 DOI: 10.1002/ctm2.1811
RESEARCH ARTICLE

PUS7-dependent pseudouridylation of ALKBH3 mRNA inhibits gastric cancer progression

Author information +
History +
PDF

Abstract

•PUS7 enhances the translation efficiency of ALKBH3 through its pseudouridylation activity on ALKBH3 mRNA, thereby inhibiting gastric tumourigenesis.

•The expression levels of PUS7 and ALKBH3 are significantly correlated in gastric tumours, which may be potential prognostic predictors and therapeutic targets for patients with gastric cancer.

Keywords

alkbh3 / gastric cancer / pseudouridylation / pus7

Cite this article

Download citation ▾
Yongxia Chang, Hao Jin, Yun Cui, Feng Yang, Kanghua Chen, Wenjun Kuang, Chunxiao Huo, Zhangqi Xu, Ya Li, Aifu Lin, Bo Yang, Wei Liu, Shanshan Xie, Tianhua Zhou. PUS7-dependent pseudouridylation of ALKBH3 mRNA inhibits gastric cancer progression. Clinical and Translational Medicine, 2024, 14(8): e1811 DOI:10.1002/ctm2.1811

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

KarijolichJ, YiC, YuY. Transcriptome-wide dynamics of RNA pseudouridylation. Nat Rev Mol Cell Biol. 2015;16:581-585.

[2]

CerneckisJ, CuiQ, HeC, et al. Decoding pseudouridine: an emerging target for therapeutic development. Trends Pharmacol Sci. 2022;43:522-535.

[3]

GeJ, YuY. RNA pseudouridylation: new insights into an old modification. Trends Biochem Sci. 2013;38:210-218.

[4]

BorchardtEK, Martinez NM, GilbertWV. Regulation and function of RNA pseudouridylation in human cells. Annu Rev Genet. 2020;54:309-336.

[5]

RuggeroD, Grisendi S, PiazzaF, et al. Dyskeratosis congenita and cancer in mice deficient in ribosomal RNA modification. Science. 2003;299:259-262.

[6]

GeJ, Rudnick DA, HeJ, et al. Dyskerin ablation in mouse liver inhibits rRNA processing and cell division. Mol Cell Biol. 2010;30:413-422.

[7]

CuiQ, YinK, ZhangX, et al. Targeting PUS7 suppresses tRNA pseudouridylation and glioblastoma tumorigenesis. Nat Cancer. 2021;2:932-949.

[8]

ZhangD, MingG, SongH. PUS7: a targetable epitranscriptomic regulator of glioblastoma growth. Trends Pharmacol Sci. 2021;42:976-978.

[9]

LiX, ZhuP, MaS, et al. Chemical pulldown reveals dynamic pseudouridylation of the mammalian transcriptome. Nat Chem Biol. 2015;11:592-597.

[10]

SafraM, NirR, FarouqD, Slutskin IV, SchwartzS. TRUB1 is the predominant pseudouridine synthase acting on mammalian mRNA via a predictable and conserved code. Genome Res. 2017;27:393-406.

[11]

CarlileTM, Martinez NM, SchaeningC, et al. mRNA structure determines modification by pseudouridine synthase 1. Nat Chem Biol. 2019;15:966-974.

[12]

DaiQ, ZhangL, SunH, et al. Quantitative sequencing using BID-seq uncovers abundant pseudouridines in mammalian mRNA at base resolution. Nat Biotechnol. 2023;41:344-354.

[13]

JohnsonL, Söll D. In vitro biosynthesis of pseudouridine at the polynucleotide level by an enzyme extract from Escherichia coli. Proc Natl Acad Sci USA. 1970;67:943-950.

[14]

HammaT. Ferre-D’Amare AR. Pseudouridine synthases. Chem Biol. 2006;13:1125-1135.

[15]

SpenkuchF, Motorin Y, HelmM. Pseudouridine: still mysterious, but never a fake (uridine). RNA Biol. 2014;11:1540-1554.

[16]

Rintala-DempseyAC, Kothe U. Eukaryotic stand-alone pseudouridine synthases-RNA modifying enzymes and emerging regulators of gene expression. RNA Biol. 2017;14:1185-1196.

[17]

GuzziN, Cieśla M, NgocPCT, et al. pseudouridylation of trna-derived fragments steers translational control in stem cells. Cell. 2018;173:1204-1216.

[18]

SongD, GuoM, XuS, et al. HSP90-dependent PUS7 overexpression facilitates the metastasis of colorectal cancer cells by regulating LASP1 abundance. J Exp Clin Cancer Res. 2021;40:170.

[19]

FedelesBI, SinghV, DelaneyJC, Li D, EssigmannJM. The AlkB family of Fe(II)/α-ketoglutarate-dependent dioxygenases: repairing nucleic acid alkylation damage and beyond. J Biol Chem. 2015;290:20734-20742.

[20]

SundheimO, Vågbø CB, BjøråsM, et al. Human ABH3 structure and key residues for oxidative demethylation to reverse DNA/RNA damage. EMBO J. 2006;25:3389-3397.

[21]

LiJ, ZhangH, WangH. N1-methyladenosine modification in cancer biology: current status and future perspectives. Comput Struct Biotechnol J. 2022;20:6578-6585.

[22]

ChenZ, QiM, ShenB, et al. Transfer RNA demethylase ALKBH3 promotes cancer progression via induction of tRNA-derived small RNAs. Nucleic Acids Res. 2019;47:2533-2545.

[23]

WooH, Chambers SK. Human ALKBH3-induced m1A demethylation increases the CSF-1 mRNA stability in breast and ovarian cancer cells. Biochim Biophys Acta Gene Regul Mech. 2019;1862:35-46.

[24]

ZhuoW, LiuY, LiS, et al. Long noncoding RNA GMAN, up-regulated in gastric cancer tissues, is associated with metastasis in patients and promotes translation of Ephrin A1 by competitively binding GMAN-AS. Gastroenterology. 2019;156:676-691.

[25]

LeiZ, YiC. A radiolabeling-free, qPCR-Based method for locus-specific pseudouridine detection. Angew Chem Int Ed Engl. 2017;56:14878-14882.

[26]

ChasséH, Boulben S, CostacheV, CormierP, Morales J. Analysis of translation using polysome profiling. Nucleic Acids Res. 2017;45:e15.

[27]

CukiermanE, PankovR, StevensDR, Yamada KM. Taking cell-matrix adhesions to the third dimension. Science. 2001;294:1708-1712.

[28]

SchwartzS, Bernstein D, MumbachM, et al. Transcriptome-wide mapping reveals widespread dynamic-regulated pseudouridylation of ncRNA and mRNA. Cell. 2014;159:148-162.

[29]

CarlileTM, Rojas-Duran MF, ZinshteynB, et al. Pseudouridine profiling reveals regulated mRNA pseudouridylation in yeast and human cells. Nature. 2014;515:143-146.

[30]

CarlileTM, Rojas-Duran MF, GilbertWV. Transcriptome-wide identification of pseudouridine modifications using pseudo-seq. Curr Protoc Mol Biol. 2015;112. 4.25.1-4.25.24.

[31]

AasPA, Otterlei M, FalnesPO, et al. Human and bacterial oxidative demethylases repair alkylation damage in both RNA and DNA. Nature. 2003;421:859-863.

[32]

OuglandR, ZhangC, LiivA, et al. AlkB restores the biological function of mRNA and tRNA inactivated by chemical methylation. Mol Cell. 2004;16:107-116.

[33]

SackLM, DavoliT, LiMZ, et al. Profound tissue specificity in proliferation control underlies cancer drivers and aneuploidy patterns. Cell. 2018;173:499-514.

[34]

AndersonBR, Muramatsu H, NallagatlaSR, et al. Incorporation of pseudouridine into mRNA enhances translation by diminishing PKR activation. Nucleic Acids Res. 2010;38:5884-5892.

[35]

EylerDE, FrancoMK, BatoolZ, et al. Pseudouridinylation of mRNA coding sequences alters translation. Proc Natl Acad Sci U S A. 2019;116:23068-23074.

RIGHTS & PERMISSIONS

2024 The Author(s). Clinical and Translational Medicine published by John Wiley & Sons Australia, Ltd on behalf of Shanghai Institute of Clinical Bioinformatics.

AI Summary AI Mindmap
PDF

155

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/