Integrated multi-omics profiling landscape of organising pneumonia

Ying Tang , Cuilin Chu , Siyuan Bu , Qin Sun , Airan Liu , Jianfeng Xie , Sen Qiao , Lingyan Huang , Hongmei Wang

Clinical and Translational Medicine ›› 2024, Vol. 14 ›› Issue (8) : e1782

PDF
Clinical and Translational Medicine ›› 2024, Vol. 14 ›› Issue (8) : e1782 DOI: 10.1002/ctm2.1782
RESEARCH ARTICLE

Integrated multi-omics profiling landscape of organising pneumonia

Author information +
History +
PDF

Abstract

Our findings reveal a significant association between organising pneumonia and lipid metabolism reprogramming and will make a substantial contribution to the understanding of the mechanism of organising pneumonia in patients.

Keywords

ferroptosis / lipid metabolism reprogramming / macrophage / organising pneumonia

Cite this article

Download citation ▾
Ying Tang, Cuilin Chu, Siyuan Bu, Qin Sun, Airan Liu, Jianfeng Xie, Sen Qiao, Lingyan Huang, Hongmei Wang. Integrated multi-omics profiling landscape of organising pneumonia. Clinical and Translational Medicine, 2024, 14(8): e1782 DOI:10.1002/ctm2.1782

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

King TE, Lee JS. Cryptogenic organizing pneumonia. N Engl J Med. 2022;386:1058-1069.

[2]

Golbets E, Kaplan A, Shafat T, et al. Secondary organizing pneumonia after recovery of mild COVID-19 infection. J Med Virol. 2022;94:417-423.

[3]

Radzikowska E, Fijolek J. Update on cryptogenic organizing pneumonia. Front Med (Lausanne). 2023;10:1146782.

[4]

Khrais A, Smighelschi B, Zainab M. Legionella: organizing pneumonia vs persistent infection. Cureus. 2022;14:e29685.

[5]

Ortega Sanchez G, Jahn K, Savic S, Zippelius A, Läubli H. Treatment of mycophenolate-resistant immune-related organizing pneumonia with infliximab. J Immunother Cancer. 2018;6:85.

[6]

Liu G, Summer R. Cellular metabolism in lung health and disease. Annu Rev Physiol. 2019;81:403-428.

[7]

Takimoto T. Micronodular pattern of organizing pneumonia or hypersensitivity pneumonia induced by an immune checkpoint inhibitor? Am J Respir Crit Care Med. 2020;202:1485-1486.

[8]

Corvol H, Alimi A, Prevost B, et al. Atypical severe organizing pneumonia following coronavirus disease 2019 in an immunocompromised teenager. Clin Infect Dis. 2022;74:938-939.

[9]

Shapouri-Moghaddam A, Mohammadian S, Vazini H, et al. Macrophage plasticity, polarization, and function in health and disease. J Cell Physiol. 2018;233:6425-6440.

[10]

Yan J, Horng T. Lipid metabolism in regulation of macrophage functions. Trends Cell Biol. 2020;30:979-989.

[11]

Dong T, Chen X, Xu H, et al. Mitochondrial metabolism mediated macrophage polarization in chronic lung diseases. Pharmacol Ther. 2022;239:108208.

[12]

Zahalka S, Starkl P, Watzenboeck ML, et al. Trained immunity of alveolar macrophages requires metabolic rewiring and type 1 interferon signaling. Mucosal Immunol. 2022;15:896-907.

[13]

Cui H, Xie N, Banerjee S, et al. Lung myofibroblasts promote macrophage profibrotic activity through lactate-induced histone lactylation. Am J Respir Cell Mol Biol. 2021;64:115-125.

[14]

Zaizen Y, Fukuoka J. Pathology of idiopathic interstitial pneumonias. Surg Pathol Clin. 2020;13:91-118.

[15]

Ma J, Chen T, Wu S, et al. iProX: an integrated proteome resource. Nucleic Acids Res. 2019;47:D1211-D1217.

[16]

Chen T, Ma J, Liu Y, et al. iProX in 2021: connecting proteomics data sharing with big data. Nucleic Acids Res. 2022;50:D1522-D1527.

[17]

Patel BV, Wilson MR, Takata M. Resolution of acute lung injury and inflammation: a translational mouse model. Eur Respir J. 2012;39:1162-1170.

[18]

Cao Z, Lis R, Ginsberg M, et al. Targeting of the pulmonary capillary vascular niche promotes lung alveolar repair and ameliorates fibrosis. Nat Med. 2016;22:154-162.

[19]

Solopov P, Colunga Biancatelli RML, Dimitropoulou C, Catravas JD. Dietary phytoestrogens ameliorate hydrochloric acid-induced chronic lung injury and pulmonary fibrosis in mice. Nutrients. 2021;13:3599.

[20]

Lam J, Katti P, Biete M, et al. A universal approach to analyzing transmission electron microscopy with ImageJ. Cells. 2021;10:2177.

[21]

Miao Y, Zhang C, Yang L, et al. The activation of PPARgamma enhances Treg responses through up-regulating CD36/CPT1-mediated fatty acid oxidation and subsequent N-glycan branching of TbetaRII/IL-2Ralpha. Cell Commun Signal. 2022;20:48.

[22]

Wang S, Matsumoto K, Lish SR, Cartagena-Rivera AX, Yamada KM. Budding epithelial morphogenesis driven by cell-matrix versus cell-cell adhesion. Cell. 2021;184:3702-3716.e3730.

[23]

Tong Y, Cheng PSW, Or CS, et al. Escape from cell-cell and cell-matrix adhesion dependence underscores disease progression in gastric cancer organoid models. Gut. 2023;72:242-255.

[24]

Jiang W-J, Xu C-T, Du C-L, et al. Tubular epithelial cell-to-macrophage communication forms a negative feedback loop via extracellular vesicle transfer to promote renal inflammation and apoptosis in diabetic nephropathy. Theranostics. 2022;12:324-339.

[25]

Soucie EL, Weng Z, Geirsdóttir L, et al. Lineage-specific enhancers activate self-renewal genes in macrophages and embryonic stem cells. Science. 2016;351:aad5510.

[26]

Subramanian S, Busch CJ-L, Molawi K, et al. Long-term culture-expanded alveolar macrophages restore their full epigenetic identity after transfer in vivo. Nat Immunol. 2022;23:458-468.

[27]

Tang J, Bu W, Hu W, et al. Ferroptosis is involved in sex-specific small intestinal toxicity in the offspring of adult mice exposed to polystyrene nanoplastics during pregnancy. ACS Nano. 2023;17:2440-2449.

[28]

Pope LE, Dixon SJ. Regulation of ferroptosis by lipid metabolism. Trends Cell Biol. 2023;33:1077-1087.

[29]

Hao J-W, Wang J, Guo H, et al. CD36 facilitates fatty acid uptake by dynamic palmitoylation-regulated endocytosis. Nat Commun. 2020;11:4765.

[30]

Shi S, Koya D, Kanasaki K. Dipeptidyl peptidase-4 and kidney fibrosis in diabetes. Fibrogenesis Tissue Repair. 2016;9:1.

[31]

Qiao Y, Liu L, Yin L, et al. FABP4 contributes to renal interstitial fibrosis via mediating inflammation and lipid metabolism. Cell Death Dis. 2019;10:382.

[32]

Chen Z, He C, Gao Z, et al. Polypyrimidine tract binding protein 1 exacerbates cardiac fibrosis by regulating fatty acid-binding protein 5. ESC Heart Fail. 2023;10:1677-1688.

[33]

Zeitler L, Fiore A, Meyer C, et al. Anti-ferroptotic mechanism of IL4i1-mediated amino acid metabolism. Elife. 2021;10:e64806.

[34]

Xiao N, Li K, Zhu X, et al. CD74(+) macrophages are associated with favorable prognosis and immune contexture in hepatocellular carcinoma. Cancer Immunol Immunother. 2022;71:57-69.

[35]

Shimada M, Hasegawa H, Rikimaru T, et al. The significance of thymidine phosphorylase activity in hepatocellular carcinoma and chronic diseased livers: a special reference to liver fibrosis and multicentric tumor occurrence. Cancer Lett. 2000;148:165-172.

[36]

Sasaki R, Devhare PB, Steele R, Ray R, Ray RB. Hepatitis C virus-induced CCL5 secretion from macrophages activates hepatic stellate cells. Hepatology. 2017;66:746-757.

[37]

Filali-Mouncef Y, Hunter C, Roccio F, et al. The menage a trois of autophagy, lipid droplets and liver disease. Autophagy. 2022;18:50-72.

[38]

Liu Q-W, Ying Y-M, Zhou J-X, et al. Human amniotic mesenchymal stem cells-derived IGFBP-3, DKK-3, and DKK-1 attenuate liver fibrosis through inhibiting hepatic stellate cell activation by blocking Wnt/beta-catenin signaling pathway in mice. Stem Cell Res Ther. 2022;13:224.

[39]

Rios FJ, Zou Z-G, Harvey AP, et al. Chanzyme TRPM7 protects against cardiovascular inflammation and fibrosis. Cardiovasc Res. 2020;116:721-735.

[40]

Revelo XS, Parthiban P, Chen C, et al. Cardiac resident macrophages prevent fibrosis and stimulate angiogenesis. Circ Res. 2021;129:1086-1101.

[41]

Liu T, Liu B, Liu Y, et al. Vesicle transporter GOLT1B mediates the cell membrane localization of DVL2 and PD-L2 and promotes colorectal cancer metastasis. Cancer Cell Int. 2021;21:287.

[42]

Panea RI, Love CL, Shingleton JR, et al. The whole-genome landscape of Burkitt lymphoma subtypes. Blood. 2019;134:1598-1607.

[43]

Kalmbach S, Grau M, Zapukhlyak M, et al. Novel insights into the pathogenesis of follicular lymphoma by molecular profiling of localized and systemic disease forms. Leukemia. 2023;37:2058-2065.

[44]

Takawale A, Zhang P, Patel VB, Wang X, Oudit G, Kassiri Z. Tissue inhibitor of matrix metalloproteinase-1 promotes myocardial fibrosis by mediating CD63-integrin beta1 interaction. Hypertension. 2017;69:1092-1103.

[45]

Terry AR, Nogueira V, Rho H, et al. CD36 maintains lipid homeostasis via selective uptake of monounsaturated fatty acids during matrix detachment and tumor progression. Cell Metab. 2023;35:2060-2076.e2069.

[46]

Mangum LC, Hou X, Borazjani A, Lee JH, Ross MK, Crow JA. Silencing carboxylesterase 1 in human THP-1 macrophages perturbs genes regulated by PPARgamma/RXR and RAR/RXR: down-regulation of CYP27A1-LXRalpha signaling. Biochem J. 2018;475:621-642.

[47]

Wu F, Zhang Z, Wang M, et al. Cellular atlas of senescent lineages in radiation-or immunotherapy-induced lung injury by single-cell RNA-sequencing analysis. Int J Radiat Oncol Biol Phys. 2023;116:1175-1189.

[48]

McKinney EF, Lee JC, Jayne DRW, Lyons PA, Smith KGC. T-cell exhaustion, co-stimulation and clinical outcome in autoimmunity and infection. Nature. 2015;523:612-616.

[49]

Sobecki M, Chen J, Krzywinska E, et al. Vaccination-based immunotherapy to target profibrotic cells in liver and lung. Cell Stem Cell. 2022;29:1459-1474.e1459.

[50]

Ye C, Zhu J, Wang J, et al. Single-cell and spatial transcriptomics reveal the fibrosis-related immune landscape of biliary atresia. Clin Transl Med. 2022;12:e1070.

[51]

Moore KJ, Sheedy FJ, Fisher EA. Macrophages in atherosclerosis: a dynamic balance. Nat Rev Immunol. 2013;13:709-721.

[52]

Kou Y, Geng F, Guo D. Lipid metabolism in glioblastoma: from de novo synthesis to storage. Biomedicines. 2022;10:1943.

[53]

Mao T, Qin F, Zhang M, Li J, Li J, Lai M. Elevated serum beta-hydroxybutyrate, a circulating ketone metabolite, accelerates colorectal cancer proliferation and metastasis via ACAT1. Oncogene. 2023;42:1889-1899.

[54]

Hartmann P, Trufa DI, Hohenberger K, et al. Contribution of serum lipids and cholesterol cellular metabolism in lung cancer development and progression. Sci Rep. 2023;13:5662.

[55]

Yin Y, He M, Huang Y, Xie X. Transcriptomic analysis identifies CYP27A1 as a diagnostic marker for the prognosis and immunity in lung adenocarcinoma. BMC Immunol. 2023;24:37.

[56]

Staquicini DI, Cardó-Vila M, Rotolo JA, et al. Ceramide as an endothelial cell surface receptor and a lung-specific lipid vascular target for circulating ligands. Proc Natl Acad Sci U S A. 2023;120:e2220269120.

[57]

Petrache I, Pujadas E, Ganju A, et al. Marked elevations in lung and plasma ceramide in COVID-19 linked to microvascular injury. JCI Insight. 2023;8:e156104.

[58]

Niimi A, Limsirichaikul S, Kano K, et al. LASP1, CERS6, and actin form a ternary complex that promotes cancer cell migration. Cancers (Basel). 2023;15:2781.

[59]

Huang T, Guan S, Wang C. CERS6-AS1 facilitates oncogenesis and restrains ferroptosis in papillary thyroid carcinoma by serving as a ceRNA through miR-497-5p/LASP1 axis. Ann Clin Lab Sci. 2022;52:426-438.

[60]

Hammerschmidt P, Steculorum SM, Bandet CL, et al. CerS6-dependent ceramide synthesis in hypothalamic neurons promotes ER/mitochondrial stress and impairs glucose homeostasis in obese mice. Nat Commun. 2023;14:7824.

[61]

Choi Y, Kim M, Kim SJ, Yoo H-J, Kim S-H, Park H-S. Metabolic shift favoring C18:0 ceramide accumulation in obese asthma. Allergy. 2020;75:2858-2866.

[62]

Aflaki E, Doddapattar P, Radović B, et al. C16 ceramide is crucial for triacylglycerol-induced apoptosis in macrophages. Cell Death Dis. 2012;3:e280.

[63]

Park E, Chung SW. ROS-mediated autophagy increases intracellular iron levels and ferroptosis by ferritin and transferrin receptor regulation. Cell Death Dis. 2019;10:822.

[64]

Wu Z, Zhong M, Liu Y, et al. Application of natural products for inducing ferroptosis in tumor cells. Biotechnol Appl Biochem. 2022;69:190-197.

[65]

Ma X, Xiao L, Liu L, et al. CD36-mediated ferroptosis dampens intratumoral CD8(+) T cell effector function and impairs their antitumor ability. Cell Metab. 2021;33:1001-1012. e1005.

[66]

Ye J, Jiang X, Dong Z, Hu S, Xiao M. Low-concentration PTX and RSL3 inhibits tumor cell growth synergistically by inducing ferroptosis in mutant p53 hypopharyngeal squamous carcinoma. Cancer Manag Res. 2019;11:9783-9792.

[67]

Kuang F, Liu J, Tang D, Kang R. Oxidative damage and antioxidant defense in ferroptosis. Front Cell Dev Biol. 2020;8:586578.

[68]

Elhamamsy AR, Metge BJ, Alsheikh HA, Shevde LA, Samant RS. Ribosome biogenesis: a central player in cancer metastasis and therapeutic resistance. Cancer Res. 2022;82:2344-2353.

RIGHTS & PERMISSIONS

2024 The Author(s). Clinical and Translational Medicine published by John Wiley & Sons Australia, Ltd on behalf of Shanghai Institute of Clinical Bioinformatics.

AI Summary AI Mindmap
PDF

147

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/