Recent advances of PIWI-interacting RNA in cardiovascular diseases

Bo Li , Kai Wang , Wei Cheng , Bo Fang , Ying Hui Li , Su Min Yang , Mei Hua Zhang , Yun Hong Wang , Kun Wang

Clinical and Translational Medicine ›› 2024, Vol. 14 ›› Issue (8) : e1770

PDF
Clinical and Translational Medicine ›› 2024, Vol. 14 ›› Issue (8) : e1770 DOI: 10.1002/ctm2.1770
REVIEW

Recent advances of PIWI-interacting RNA in cardiovascular diseases

Author information +
History +
PDF

Abstract

•piRNA can be used as a potential therapeutic target and biomaker in CVDs.

•piRNA influences apoptosis, inflammation and angiogenesis by regulating epigenetic modificaions.

•Critical knowledge gaps remain in the unifying piRNA nomenclature and PIWI-independent function.

Keywords

biomarkers / CVDs / epigenetics / PIWI-interacting RNA

Cite this article

Download citation ▾
Bo Li, Kai Wang, Wei Cheng, Bo Fang, Ying Hui Li, Su Min Yang, Mei Hua Zhang, Yun Hong Wang, Kun Wang. Recent advances of PIWI-interacting RNA in cardiovascular diseases. Clinical and Translational Medicine, 2024, 14(8): e1770 DOI:10.1002/ctm2.1770

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

ZhaoD, LiuJ, WangM, Zhang X, ZhouM. Epidemiology of cardiovascular disease in China: current features and implications. Nat Rev Cardiol. 2019;16:203-212.

[2]

DuX, PatelA, AndersonCS, Dong J, MaC. Epidemiology of cardiovascular disease in china and opportunities for improvement: JACC International. J Am Coll Cardiol. 2019;73:3135-3147.

[3]

RayM, Butel-Simoes LE, LombardJM, et al. Women’s cardiovascular health—the cardio-oncologic jigsaw. Climacteric. 2024;27:60-67.

[4]

Fernández-JustelJM, Santa-MaríaC, Martín-Vírgala S, et al. Histone H1 regulates non-coding RNA turnover on chromatin in a m6A-dependent manner. Cell Rep. 2022;40:111329.

[5]

LiuN, Kataoka M, WangY, et al. LncRNA LncHrt preserves cardiac metabolic homeostasis and heart function by modulating the LKB1-AMPK signaling pathway. Basic Res Cardiol. 2021;116:48.

[6]

VrettosN, OppeltJ, ZochA, et al. MIWI N-terminal arginines orchestrate generation of functional pachytene piRNAs and spermiogenesis. Nucleic Acids Res. 2024;52(11):6558-6570.

[7]

YanZ, HuHY, JiangX, et al. Widespread expression of piRNA-like molecules in somatic tissues. Nucleic Acids Res. 2011;39:6596-6607.

[8]

PriceIF, WagnerJA, PastoreB, Hertz HL, TangW. C. elegans germ granules sculpt both germline and somatic RNAome. Nat Commun. 2023;14:5965.

[9]

WangX, RamatA, SimoneligM, Liu M-F. Emerging roles and functional mechanisms of PIWI-interacting RNAs. Nat Rev Mol Cell Biol. 2023;24:123-141.

[10]

GeDT, WangW, TippingC, Gainetdinov I, WengZ, ZamorePD. The RNA-binding ATPase, armitage, couples piRNA amplification in nuage to phased piRNA production on mitochondria. Mol Cell. 2019;74:982-995 e986.

[11]

WangK, ZhouL-Y, LiuF, et al. PIWI-interacting RNA HAAPIR regulates cardiomyocyte death after myocardial infarction by promoting NAT10-mediated ac(4) C acetylation of Tfec mRNA. Adv Sci (Weinh). 2022;9:e2106058.

[12]

XiongQ, ZhangY. Small RNA modifications: regulatory molecules and potential applications. J Hematol Oncol. 2023;16:64.

[13]

ZhangX, HeX, LiuC, et al. IL-4 inhibits the biogenesis of an epigenetically suppressive PIWI-interacting RNA to upregulate CD1a molecules on monocytes/dendritic cells. J Immunol. 2016;196:1591-1603.

[14]

SunYH, WangRH, DuK, et al. Coupled protein synthesis and ribosome-guided piRNA processing on mRNAs. Nat Commun. 2021;12:5970.

[15]

IshizuH, Iwasaki YW, HirakataS, et al. Somatic primary piRNA biogenesis driven by cis-acting RNA elements and trans-acting Yb. Cell Rep. 2015;12:429-440.

[16]

ZhaoS, GouL-T, ZhangM, et al. piRNA-triggered MIWI ubiquitination and removal by APC/C in late spermatogenesis. Dev Cell. 2013;24:13-25.

[17]

BalaratnamS, HoqueME, WestN, Basu S. Decay of Piwi-interacting RNAs in human cells is primarily mediated by 5′ to 3′ exoribonucleases. ACS Chem Biol. 2022;17:1723-1732.

[18]

NagarajanVK, JonesCI, NewburySF, Green PJ. XRN 5′→3′ exoribonucleases: structure, mechanisms and functions. Biochim Biophys Acta. 2013;1829:590-603.

[19]

KammingaLM, Luteijn MJ, Den BroederMJ, et al. Hen1 is required for oocyte development and piRNA stability in zebrafish. EMBO J. 2010;29:3688-3700.

[20]

GainetdinovI, ColpanC, CecchiniK, et al. Terminal modification, sequence, length, and PIWI-protein identity determine piRNA stability. Mol Cell. 2021;81:4826-4842 e4828.

[21]

Asif-LaidinA, CasierK, ZiriatZ, et al. Modeling early germline immunization after horizontal transfer of transposable elements reveals internal piRNA cluster heterogeneity. BMC Biol. 2023;21:117.

[22]

LewisSH, Quarles KA, YangY, et al. Pan-arthropod analysis reveals somatic piRNAs as an ancestral defence against transposable elements. Nat Ecol Evol. 2018;2:174-181.

[23]

FabryMH, Ciabrelli F, MunafòM, et al. piRNA-guided co-transcriptional silencing coopts nuclear export factors. Elife. 2019;8:e47999.

[24]

MuranoK, Iwasaki YW, IshizuH, et al. Nuclear RNA export factor variant initiates piRNA-guided co-transcriptional silencing. EMBO J. 2019;38:e102870.

[25]

DaiP, WangX, GouL-T, et al. A translation-activating function of MIWI/piRNA during mouse spermiogenesis. Cell. 2019;179:1566-1581 e1516.

[26]

DufourtJ, Bontonou G, ChartierA, et al. piRNAs and Aubergine cooperate with Wispy poly(A) polymerase to stabilize mRNAs in the germ plasm. Nat Commun. 2017;8:1305.

[27]

UnhavaithayaY, HaoY, BeyretE, et al. MILI, a PIWI-interacting RNA-binding protein, is required for germ line stem cell self-renewal and appears to positively regulate translation. J Biol Chem. 2009;284:6507-6519.

[28]

SienskiG, Dönertas D, BrenneckeJ. Transcriptional silencing of transposons by Piwi and maelstrom and its impact on chromatin state and gene expression. Cell. 2012;151:964-980.

[29]

WangX, LinD-H, YanY, et al. The PIWI-specific insertion module helps load longer piRNAs for translational activation essential for male fertility. Sci China Life Sci. 2023;66:1459-1481.

[30]

LiM, YangY, WangZ, et al. Piwi-interacting RNAs (piRNAs) as potential biomarkers and therapeutic targets for cardiovascular diseases. Angiogenesis. 2021;24:19-34.

[31]

HuangY, LiY, ZhangK, et al. Expression and diagnostic value of PIWI-interacting RNA by serum in acute myocardial infarction. J Cardiol. 2023;82:441-447.

[32]

MiT, TanX, WangZ, et al. Activation of the p53 signaling pathway by piRNA-MW557525 overexpression induces a G0/G1 phase arrest thus inhibiting neuroblastoma growth. Eur J Med Res. 2023;28:503.

[33]

ChiapporiF, Cupaioli FA, ConsiglioA, et al. Analysis of faecal microbiota and small ncRNAs in autism: detection of miRNAs and piRNAs with possible implications in host-gut microbiota cross-talk. Nutrients. 2022;14:1340.

[34]

SabbahNA, Abdalla WM, MawlaWA, et al. piRNA-823 is a unique potential diagnostic non-invasive biomarker in colorectal cancer patients. Genes (Basel). 2021;12:598.

[35]

WangZ, YangH, MaD, et al. Serum PIWI-interacting RNAs piR-020619 and piR-020450 are promising novel biomarkers for early detection of colorectal cancer. Cancer Epidemiol Biomarkers Prev. 2020;29:990-998.

[36]

RazaA, KhanAQ, InchakalodyVP, et al. Dynamic liquid biopsy components as predictive and prognostic biomarkers in colorectal cancer. J Exp Clin Cancer Res. 2022;41:99.

[37]

SunW, SamimiH, GamezM, Zare H, FrostB. Pathogenic tau-induced piRNA depletion promotes neuronal death through transposable element dysregulation in neurodegenerative tauopathies. Nat Neurosci. 2018;21:1038-1048.

[38]

BanX-X, WanH, WanX-X, et al. Copper metabolism and cuproptosis: molecular mechanisms and therapeutic perspectives in neurodegenerative diseases. Curr Med Sci. 2024;44:28-50.

[39]

QiuW, GuoX, LinX, et al. Transcriptome-wide piRNA profiling in human brains of Alzheimer’s disease. Neurobiol Aging. 2017;57:170-177.

[40]

WuY-J, WangJ, ZhangP, et al. PIWIL1 interacting RNA piR-017724 inhibits proliferation, invasion, and migration, and inhibits the development of HCC by silencing PLIN3. Front Oncol. 2023;13:1203821.

[41]

VellaS, GalloA, Lo NigroA, et al. PIWI-interacting RNA (piRNA) signatures in human cardiac progenitor cells. Int J Biochem Cell Biol. 2016;76:1-11.

[42]

Hernández-ContrerasKA, Martínez-DíazJA, Hernández-AguilarME, et al. Alterations of mRNAs and non-coding RNAs associated with neuroinflammation in Alzheimer’s disease. Mol Neurobiol. 2024;61(8):5826-5840.

[43]

YuY, XiaL-K, DiY, NieQ-Z, ChenX-L. Mechanism of piR-1245/PIWI-like protein-2 regulating Janus kinase-2/signal transducer and activator of transcription-3/vascular endothelial growth factor signaling pathway in retinal neovascularization. Neural Regen Res. 2023;18:1132-1138.

[44]

DonatoL, Scimone C, RinaldiC, D’angeloR, SidotiA. Non-coding RNAome of RPE cells under oxidative stress suggests unknown regulative aspects of Retinitis pigmentosa etiopathogenesis. Sci Rep. 2018;8:16638.

[45]

RenR, TanH, HuangZ, Wang Y, YangB. Differential expression and correlation of immunoregulation related piRNA in rheumatoid arthritis. Front Immunol. 2023;14:1175924.

[46]

De AraujoLS, Ribeiro-Alves M, Leal-CalvoT, et al. Reprogramming of small noncoding RNA populations in peripheral blood reveals host biomarkers for latent and active mycobacterium tuberculosis infection. mBio. 2019;10:e01037.

[47]

ChenB, ShiB, ZhouZ, et al. Targeting a cardiac abundant and fibroblasts-specific piRNA (CFRPi) to attenuate and reverse cardiac fibrosis in pressure-overloaded heart failure. Transl Res. 2024;267:10-24.

[48]

ShanP, YeT, TangY-D, et al. First total synthesis, antitumor evaluation and target identification of mornaphthoate E: a new tubulin inhibitor template acting on PI3K/Akt signaling pathway. Acta Pharm Sin B. 2024;14:2177-2193.

[49]

QuA, WangW, YangY, et al. A serum piRNA signature as promising non-invasive diagnostic and prognostic biomarkers for colorectal cancer. Cancer Manag Res. 2019;11:3703-3720.

[50]

ZhangH, AliA, GaoJ, et al. IsopiRBank: a research resource for tracking piRNA isoforms. Database (Oxford). 2018;2018:bay059.

[51]

GuoC, WangX, RenH. Databases and computational methods for the identification of piRNA-related molecules: a survey. Comput Struct Biotechnol J. 2024;23:813-833.

[52]

WangJ, ZhangP, LuY, et al. piRBase: a comprehensive database of piRNA sequences. Nucleic Acids Res. 2019;47:D175-D180.

[53]

SarkarA, MajiRK, SahaS, Ghosh Z. piRNAQuest: searching the piRNAome for silencers. BMC Genomics. 2014;15:555.

[54]

RosenkranzD. piRNA cluster database: a web resource for piRNA producing loci. Nucleic Acids Res. 2016;44:D223-D230.

[55]

WuW-S, BrownJS, ChenT-T, et al. piRTarBase: a database of piRNA targeting sites and their roles in gene regulation. Nucleic Acids Res. 2019;47:D181-D187.

[56]

Sai LakshmiS, Agrawal S. piRNABank: a web resource on classified and clustered Piwi-interacting RNAs. Nucleic Acids Res. 2008;36:D173-D177.

[57]

ZhangY, WangX, KangL. A k-mer scheme to predict piRNAs and characterize locust piRNAs. Bioinformatics. 2011;27:771-776.

[58]

HerlitzJ, Svensson L. The value of biochemical markers for risk stratification prior to hospital admission in acute chest pain. Acute Card Care. 2008;10:197-204.

[59]

BlankesteijnWM, Van Gijn ME, Essers-JanssenYPG, DaemenMJAP, SmitsJFM. Beta-catenin, an inducer of uncontrolled cell proliferation and migration in malignancies, is localized in the cytoplasm of vascular endothelium during neovascularization after myocardial infarction. Am J Pathol. 2000;157:877-883.

[60]

WangK, LongB, ZhouL-Y, et al. CARL lncRNA inhibits anoxia-induced mitochondrial fission and apoptosis in cardiomyocytes by impairing miR-539-dependent PHB2 downregulation. Nat Commun. 2014;5:3596.

[61]

ZhouY, FangY, DaiC, WangY. PiRNA pathway in the cardiovascular system: a novel regulator of cardiac differentiation, repair and regeneration. J Mol Med (Berl). 2021;99:1681-1690.

[62]

GimbroneMA, García-Cardeña G. Endothelial cell dysfunction and the pathobiology of atherosclerosis. Circ Res. 2016;118:620-636.

[63]

HuangH, SunZ, XuJ, et al. Yang-Xin-Shu-Mai granule alleviates atherosclerosis by regulating macrophage polarization via the TLR9/MyD88/NF-kappaB signaling pathway. J Ethnopharmacol. 2024;318:116868.

[64]

WangY, LiuT, XiaoW, Bai Y, YueD, FengL. Ox-LDL induced profound changes of small non-coding RNA in rat endothelial cells. Front Cardiovasc Med. 2023;10:1060719.

[65]

HizirZ, Bottini S, GrandjeanV, TrabucchiM, Repetto E. RNY (YRNA)-derived small RNAs regulate cell death and inflammation in monocytes/macrophages. Cell Death Dis. 2017;8:e2530.

[66]

ChenW, LiL, WangJ, et al. Extracellular vesicle YRNA in atherosclerosis. Clin Chim Acta. 2021;517:15-22.

[67]

ChenW, ZhangS, WuJ, et al. Butyrate-producing bacteria and the gut-heart axis in atherosclerosis. Clin Chim Acta. 2020;507:236-241.

[68]

WuQ-Q, XiaoY, YuanY, et al. Mechanisms contributing to cardiac remodelling. Clin Sci (Lond). 2017;131:2319-2345.

[69]

BuitragoM, LorenzK, MaassAH, et al. The transcriptional repressor Nab1 is a specific regulator of pathological cardiac hypertrophy. Nat Med. 2005;11:837-844.

[70]

ZhangK, LiY, HuangY, Sun K. PiRNA in cardiovascular disease: focus on cardiac remodeling and cardiac protection. J Cardiovasc Transl Res. 2023;16:768-777.

[71]

RajanKS, Velmurugan G, PandiG, RamasamyS. miRNA and piRNA mediated Akt pathway in heart: antisense expands to survive. Int J Biochem Cell Biol. 2014;55:153-156.

[72]

GaoX-Q, ZhangY-H, LiuF, et al. The piRNA CHAPIR regulates cardiac hypertrophy by controlling METTL3-dependent N(6)-methyladenosine methylation of Parp10 mRNA. Nat Cell Biol. 2020;22:1319-1331.

[73]

DornLE, LasmanL, ChenJ, et al. The N(6)-methyladenosine mRNA methylase METTL3 controls cardiac homeostasis and hypertrophy. Circulation. 2019;139:533-545.

[74]

RajanKS, Velmurugan G, GopalP, et al. Abundant and altered expression of PIWI-interacting RNAs during cardiac hypertrophy. Heart Lung Circ. 2016;25:1013-1020.

[75]

LiS. Effects of transplantation of hypoxia-inducible factor-1alpha genemodified cardiac stem cells on cardiac function of heart failure rats after myocardial infarction. Anatol J Cardiol. 2018;20:318-329.

[76]

NishimuraA, Shimauchi T, TanakaT, et al. Hypoxia-induced interaction of filamin with Drp1 causes mitochondrial hyperfission-associated myocardial senescence. Sci Signal. 2018:11.

[77]

VujicA, Robinson EL, ItoM, et al. Experimental heart failure modelled by the cardiomyocyte-specific loss of an epigenome modifier, DNMT3B. J Mol Cell Cardiol. 2015;82:174-183.

[78]

NührenbergTG, Hammann N, SchnickT, et al. Cardiac myocyte de novo DNA methyltransferases 3a/3b are dispensable for cardiac function and remodeling after chronic pressure overload in mice. PLoS One. 2015;10:e0131019.

[79]

BjornssonHT. Intra-individual change over time in DNA methylation with familial clustering. JAMA. 2008;299:2877-2883.

[80]

ZhongN, NongX, DiaoJ, Yang G. piRNA-6426 increases DNMT3B-mediated SOAT1 methylation and improves heart failure. Aging (Albany NY). 2022;14:2678-2694.

[81]

YangJ, XueFT, LiYY, LiuW, ZhangS. Exosomal piRNA sequencing reveals differences between heart failure and healthy patients. Eur Rev Med Pharmacol Sci. 2018;22:7952-7961. doi:10.26355/eurrev_201811_16423

[82]

MussaFF, HortonJD, MoridzadehR, Nicholson J, TrimarchiS, EagleKA. Acute aortic dissection and intramural hematoma: a systematic review. JAMA. 2016;316:754-763.

[83]

LiM, LiG, YangY, et al. piRNA-823 is a novel potential therapeutic target in aortic dissection. Pharmacol Res. 2023;196:106932.

[84]

NaeijeR, Richter MJ, RubinLJ. The physiological basis of pulmonary arterial hypertension. Eur Respir J. 2022;59:2102334.

[85]

BoucheratO, Agrawal V, LawrieA, BonnetS. The latest in animal models of pulmonary hypertension and right ventricular failure. Circ Res. 2022;130:1466-1486.

[86]

MaC, ZhangL, WangX, et al. piRNA-63076 contributes to pulmonary arterial smooth muscle cell proliferation through acyl-CoA dehydrogenase. J Cell Mol Med. 2020;24:5260-5273.

[87]

RisauW. Mechanisms of angiogenesis. Nature. 1997;386:671-674.

[88]

YanH, WuQ-L, SunC-Y, et al. piRNA-823 contributes to tumorigenesis by regulating de novo DNA methylation and angiogenesis in multiple myeloma. Leukemia. 2015;29:196-206.

[89]

ZhouZ, LuC, MengS, et al. Silencing of PTGS2 exerts promoting effects on angiogenesis endothelial progenitor cells in mice with ischemic stroke via repression of the NF-kappaB signaling pathway. J Cell Physiol. 2019;234:23448-23460.

[90]

WhitmoreHAB, Amarnani D, O’hareM, et al. TNF-alpha signaling regulates RUNX1 function in endothelial cells. FASEB J. 2021;35:e21155.

[91]

PiY, LiangZ, JiangQ, et al. The role of PIWI-interacting RNA in naringin pro-angiogenesis by targeting HUVECs. Chem Biol Interact. 2023;371:110344.

[92]

ZhaoQ, QianL, GuoY, et al. IL11 signaling mediates piR-2158 suppression of cell stemness and angiogenesis in breast cancer. Theranostics. 2023;13:2337-2349.

[93]

BaruahJ, Hitzman R, ZhangJ, ChaudhuriS, MastejV, WaryKK. The allosteric glycogen synthase kinase-3 inhibitor NP12 limits myocardial remodeling and promotes angiogenesis in an acute myocardial infarction model. J Biol Chem. 2017;292:20785-20798.

[94]

WrightLH, HerrDJ, BrownSS, Kasiganesan H, MenickDR. Angiokine Wisp-1 is increased in myocardial infarction and regulates cardiac endothelial signaling. JCI Insight. 2018;3:e95824.

[95]

FuW-B, WangWE, ZengC-Y. Wnt signaling pathways in myocardial infarction and the therapeutic effects of Wnt pathway inhibitors. Acta Pharmacol Sin. 2019;40:9-12.

[96]

Van Den BorneSWM, Diez J, BlankesteijnWM, VerjansJ, Hofstra L, NarulaJ. Myocardial remodeling after infarction: the role of myofibroblasts. Nat Rev Cardiol. 2010;7:30-37.

[97]

SunL-Y, BieZ-D, ZhangC-H, Li H, LiL-D, YangJ. MiR-154 directly suppresses DKK2 to activate Wnt signaling pathway and enhance activation of cardiac fibroblasts. Cell Biol Int. 2016;40:1271-1279.

[98]

RayfordKJ, CooleyA, StrodeAW, et al. Trypanosoma cruzi dysregulates expression profile of piRNAs in primary human cardiac fibroblasts during early infection phase. Front Cell Infect Microbiol. 2023;13:1083379.

[99]

ZaidiS, Brueckner M. Genetics and genomics of congenital heart disease. Circ Res. 2017;120:923-940.

[100]

Le BrasA. ROBO4 variants linked to congenital heart defects. Nat Rev Cardiol. 2019;16:70.

[101]

JiaS, ZhangQ, WangY, et al. PIWI-interacting RNA sequencing profiles in maternal plasma-derived exosomes reveal novel non-invasive prenatal biomarkers for the early diagnosis of nonsyndromic cleft lip and palate. EBioMedicine. 2021;65:103253.

[102]

Dilated cardiomyopathy. Nat Rev Dis Primers. 2019;5:33.

[103]

WangK, LiF-H, ZhouL-Y, et al. HNEAP regulates necroptosis of cardiomyocytes by suppressing the m(5) C methylation of Atf7 mRNA. Adv Sci (Weinh). 2023;10:e2304329.

[104]

HanD, ZhouT, LiL, et al. AVCAPIR: a novel procalcific PIWI-interacting RNA in calcific aortic valve disease. Circulation. 2024;149:1578-1597.

[105]

ShahR, MurthyV, PacoldM, et al. Extracellular RNAs are associated with insulin resistance and metabolic phenotypes. Diabetes Care. 2017;40:546-553.

[106]

ZengQ, CaiJ, WanH, et al. PIWI-interacting RNAs and PIWI proteins in diabetes and cardiovascular disease: molecular pathogenesis and role as biomarkers. Clin Chim Acta. 2021;518:33-37.

[107]

DongZ-W, ShaoP, DiaoL-T, Zhou H, YuC-H, QuL-H. RTL-P: a sensitive approach for detecting sites of 2′-O-methylation in RNA molecules. Nucleic Acids Res. 2012;40:e157.

[108]

MeiY, WangY, KumariP, et al. A piRNA-like small RNA interacts with and modulates p-ERM proteins in human somatic cells. Nat Commun. 2015;6:7316.

[109]

LiS, XuZ, ShengJ. tRNA-derived small RNA: a novel regulatory small non-coding RNA. Genes (Basel). 2018;9:246.

[110]

XiangD-F, ZhuJ-Q, HouC-C, Yang W-X. Identification and expression pattern analysis of Piwi genes during the spermiogenesis of Portunus trituberculatus. Gene. 2014;534:240-248.

[111]

ShiS, YangZ-Z, LiuS, YangF, LinH. PIWIL1 promotes gastric cancer via a piRNA-independent mechanism. Proc Natl Acad Sci U S A. 2020;117:22390-22401.

[112]

ZhengS, ZhengH, HuangA, et al. Piwi-interacting RNAs play a role in vitamin C-mediated effects on endothelial aging. Int J Med Sci. 2020;17:946-952.

[113]

ZhouY, LiangQ, WuX, et al. siRNA delivery against myocardial ischemia reperfusion injury mediated by reversibly camouflaged biomimetic nanocomplexes. Adv Mater. 2023;35:e2210691.

[114]

HeS, ZhangZ, LuoR, JiangQ, YangL, Wang Y. Advances in injectable hydrogel strategies for heart failure treatment. Adv Healthc Mater. 2023;12:e2300029.

[115]

BarucciG, CornesE, SinghM, et al. Small-RNA-mediated transgenerational silencing of histone genes impairs fertility in piRNA mutants. Nat Cell Biol. 2020;22:235-245.

[116]

BrownJS, ZhangD, GaylordO, Chen W, LeeH-C. Sensitized piRNA reporter identifies multiple RNA processing factors involved in piRNA-mediated gene silencing. Genetics. 2023;224:iyad095.

[117]

LiZ, LiZ, ZhangY, et al. Mammalian PIWI-piRNA-target complexes reveal features for broad and efficient target silencing. Nat Struct Mol Biol. 2024. Online ahead of print.

[118]

PriyadarshiniM, NiJZ, Vargas-VelazquezAM, GuSG, Frøkjær-Jensen C. Reprogramming the piRNA pathway for multiplexed and transgenerational gene silencing in C. elegans. Nat Methods. 2022;19:187-194.

RIGHTS & PERMISSIONS

2024 The Author(s). Clinical and Translational Medicine published by John Wiley & Sons Australia, Ltd on behalf of Shanghai Institute of Clinical Bioinformatics.

AI Summary AI Mindmap
PDF

140

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/