Neutrophil pyroptosis regulates corneal wound healing and post-injury neovascularisation

Peng Chen , Zhentao Zhang , Lilian Sakai , Yanping Xu , Shanzhi Wang , Kyung Eun Lee , Bingchuan Geng , Jongsoo Kim , Bao Zhao , Qiang Wang , Haitao Wen , Heather L. Chandler , Hua Zhu

Clinical and Translational Medicine ›› 2024, Vol. 14 ›› Issue (11) : e1762

PDF
Clinical and Translational Medicine ›› 2024, Vol. 14 ›› Issue (11) : e1762 DOI: 10.1002/ctm2.1762
RESEARCH ARTICLE

Neutrophil pyroptosis regulates corneal wound healing and post-injury neovascularisation

Author information +
History +
PDF

Abstract

•Neutrophil pyroptosis delays re-epithelialization after corneal injury

•Compromised re-epithelialization promotes corneal neovascularization afterinjury

•Inhibition of post-injury pyroptosis could be an effective therapy to promote corneal wound healing.

Keywords

corneal wound healing / neovascularisation / neutrophil / pyroptosis

Cite this article

Download citation ▾
Peng Chen, Zhentao Zhang, Lilian Sakai, Yanping Xu, Shanzhi Wang, Kyung Eun Lee, Bingchuan Geng, Jongsoo Kim, Bao Zhao, Qiang Wang, Haitao Wen, Heather L. Chandler, Hua Zhu. Neutrophil pyroptosis regulates corneal wound healing and post-injury neovascularisation. Clinical and Translational Medicine, 2024, 14(11): e1762 DOI:10.1002/ctm2.1762

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bunker DJ, George RJ, Kleinschmidt A, Kumar RJ, Maitz P. Alkali-related ocular burns: a case series and review. J Burn Care Res. 2014;35:261-268.

[2]

Bates A, Zanaboni AJS. Ocular Burns. StarPearls Publishing; 2020.

[3]

Haring RS, Sheffield ID, Channa R, Canner JK, Schneider EB. Epidemiologic trends of chemical ocular burns in the United States. JAMA Ophthalmol. 2016;134:1119-1124.

[4]

Cortina MS, de la Cruz J. Keratoprostheses and artificial corneas: Fundamentals and surgical applications. 2015.

[5]

Wagoner MD. Chemical injuries of the eye: current concepts in pathophysiology and therapy. Surv Ophthalmol. 1997;41:275-313.

[6]

Rozenbaum D, Baruchin AM, Dafna Z. Chemical burns of the eye with special reference to alkali burns. Burns. 1991;17:136-140.

[7]

Theilgaard-Mönch K, Knudsen S, Follin P, Borregaard N. The transcriptional activation program of human neutrophils in skin lesions supports their important role in wound healing. J Immunol. 2004;172:7684-7693.

[8]

Dovi JV, He LK, DiPietro LA. Accelerated wound closure in neutrophil-depleted mice. J Leukocyte Biol. 2003;73:448-455.

[9]

Huang W, Jiao J, Liu J, et al. MFG-E8 accelerates wound healing in diabetes by regulating “NLRP3 inflammasome-neutrophil extracellular traps” axis. Cell Death Discov. 2020;6:84.

[10]

Wan T, Zhang Y, Yuan K, Min J, Mou Y, Jin X. Acetylsalicylic acid promotes corneal epithelium migration by regulating neutrophil extracellular traps in alkali burn. Front Immunol. 2020;11:551057.

[11]

Yuan K, Zheng J, Huang X, et al. Neutrophil extracellular traps promote corneal neovascularization-induced by alkali burn. Int Immunopharmacol. 2020;88:106902.

[12]

Mankan AK, Dau T, Jenne D, Hornung V. The NLRP3/ASC/Caspase-1 axis regulates IL-1β processing in neutrophils. Eur J Immunol. 2012;42:710-715.

[13]

Ryu JC, Kim MJ, Kwon Y, et al. Neutrophil pyroptosis mediates pathology of P. aeruginosa lung infection in the absence of the NADPH oxidase NOX2. Mucosal Immunol. 2017;10:757-774.

[14]

Fantuzzi G, Puren AJ, Harding MW, Livingston DJ, Dinarello CA. Interleukin-18 regulation of interferon gamma production and cell proliferation as shown in interleukin-1beta-converting enzyme (caspase-1)-deficient mice. Blood. 1998;91:2118-2125.

[15]

Sarkar A, Hall MW, Exline M, et al. Caspase-1 regulates Escherichia coli sepsis and splenic B cell apoptosis independently of interleukin-1beta and interleukin-18. Am J Respir Crit Care Med. 2006;174:1003-1010.

[16]

Wang J, Shao Y, Wang W, et al. Caspase-11 deficiency impairs neutrophil recruitment and bacterial clearance in the early stage of pulmonary Klebsiella pneumoniae infection. Int J Med Microbiol. 2017;307:490-496.

[17]

Vanden Berghe T, Demon D, Bogaert P, et al. Simultaneous targeting of IL-1 and IL-18 is required for protection against inflammatory and septic shock. Am J Respir Crit Care Med. 2014;189:282-291.

[18]

Dong M, Yang L, Qu M, et al. Autocrine IL-1β mediates the promotion of corneal neovascularization by senescent fibroblasts. Am J Physiol Cell Physiol. 2018;315:C734-C743.

[19]

Yu Z, Yazdanpanah G, Alam J, de Paiva CS, Pflugfelder S. Induction of innate inflammatory pathways in the corneal epithelium in the desiccating stress dry eye model. Invest Ophthalmol Vis Sci. 2023;64:8-8.

[20]

Tan Y, Zhang M, Pan Y, Feng H, Xie L. Suppression of the caspase-1/GSDMD-mediated pyroptotic signaling pathway through dexamethasone alleviates corneal alkali injuries. Exp Eye Res. 2022;214:108858.

[21]

Li L, Yu Y, Zhuang Z, Wu Q, Lin S, Hu J. Dopamine receptor 1 treatment promotes epithelial repair of corneal injury by inhibiting NOD-like receptor protein 3-associated inflammation. Invest Ophthalmol Vis Sci. 2024;65:49-49.

[22]

Li J, Yang K, Pan X, et al. Long noncoding RNA MIAT regulates hyperosmotic stress-induced corneal epithelial cell injury via inhibiting the caspase-1-dependent pyroptosis and apoptosis in dry eye disease. J Inflamm Res. 2022;15:3269-3283.

[23]

Soleimani M, Mirshahi R, Cheraqpour K, et al. Intrastromal versus subconjunctival injection of mesenchymal stem/stromal cells for promoting corneal repair. Ocul Surf. 2023;30:187-195.

[24]

Wang X, Zhang S, Dong M, Li Y, Zhou Q, Yang L. The proinflammatory cytokines IL-1β and TNF-α modulate corneal epithelial wound healing through p16(Ink4a) suppressing STAT3 activity. J Cell Physiol. 2020;235:10081-10093.

[25]

Cookson BT, Brennan MA. Pro-inflammatory programmed cell death. Trends Microbiol. 2001;9:113-114.

[26]

Liu X, Xia S, Zhang Z, Wu H, Lieberman J. Channelling inflammation: gasdermins in physiology and disease. Nat Rev Drug Discov. 2021;20:384-405.

[27]

Man SM, Karki R, Kanneganti TD. Molecular mechanisms and functions of pyroptosis, inflammatory caspases and inflammasomes in infectious diseases. Immunol Rev. 2017;277:61-75.

[28]

Bergsbaken T, Fink SL, Cookson BT. Pyroptosis: host cell death and inflammation. Nat Rev Micro. 2009;7:99-109.

[29]

Shi J, Zhao Y, Wang K, et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature. 2015;526:660-665.

[30]

Kayagaki N, Stowe IB, Lee BL, et al. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature. 2015;526:666-671.

[31]

Sollberger G, Choidas A, Burn GL, et al. Gasdermin D plays a vital role in the generation of neutrophil extracellular traps. Sci Immunol. 2018;3:eaar6689.

[32]

Karmakar M, Minns M, Greenberg EN, et al. N-GSDMD trafficking to neutrophil organelles facilitates IL-1β release independently of plasma membrane pores and pyroptosis. Nat Commun. 2020;11:2212.

[33]

Liu L, Sun B. Neutrophil pyroptosis: new perspectives on sepsis. Cell Mol Life Sci. 2019;76:2031-2042.

[34]

Karmakar M, Katsnelson M, Malak HA, et al. Neutrophil IL-1β processing induced by pneumolysin is mediated by the NLRP3/ASC inflammasome and caspase-1 activation and is dependent on K+ efflux. J Immunol. 2015;194:1763-1775.

[35]

Chen KW, Monteleone M, Boucher D, et al. Noncanonical inflammasome signaling elicits gasdermin D-dependent neutrophil extracellular traps. Sci Immunol. 2018;3:eaar6676.

[36]

Kambara H, Liu F, Zhang X, Liu P, et al. Gasdermin D exerts anti-inflammatory effects by promoting neutrophil death. Cell Rep. 2018;22:2924-2936.

[37]

Bian F, Xiao Y, Zaheer M, et al. Inhibition of NLRP3 inflammasome pathway by butyrate improves corneal wound healing in corneal alkali burn. Int J Mol Sci. 2017;18:562.

[38]

Chandler HL, Tan T, Yang C, et al. MG53 promotes corneal wound healing and mitigates fibrotic remodeling in rodents. Commun Biol. 2019;2:71.

[39]

Anderson C, Zhou Q, Wang S. An alkali-burn injury model of corneal neovascularization in the mouse. J Vis Exp. 2014;86:51159.

[40]

Suzuki K, Tsuchiya M, Yoshida S, et al. Tissue accumulation of neutrophil extracellular traps mediates muscle hyperalgesia in a mouse model. Sci Rep. 2022;12:1-14.

[41]

Jiang L, Liang J, Huang W, et al. CRISPR activation of endogenous genes reprograms fibroblasts into cardiovascular progenitor cells for myocardial infarction therapy. Mol Ther. 2022;30:54-74.

[42]

Zhaolin Z, Guohua L, Shiyuan W, Zuo W. Role of pyroptosis in cardiovascular disease. Cell Prolif. 2019;52:e12563.

[43]

Lu P, Li L, Liu G, van Rooijen N, Mukaida N, Zhang X. Opposite roles of CCR2 and CX3CR1 macrophages in alkali-induced corneal neovascularization. Cornea. 2009;28:562-569.

[44]

Ueta T, Ishihara K, Notomi S, et al. RIP1 kinase mediates angiogenesis by modulating macrophages in experimental neovascularization. Proc Natl Acad Sci USA. 2019;116:23705-23713.

[45]

Shi YN, Zhu N, Liu C, et al. Wnt5a and its signaling pathway in angiogenesis. Clin Chim Acta. 2017;471:263-269.

[46]

Stefater JA 3rd. Macrophage Wnt-Calcineurin-Flt1 signaling regulates mouse wound angiogenesis and repair. Blood. 2013;121:2574-2578.

[47]

Xu F, Ren ZX, Zhong XM, Zhang Q, Zhang JY, Yang J. Intrauterine inflammation damages placental angiogenesis via Wnt5a-Flt1 activation. Inflammation. 2019;42:818-825.

[48]

Murdoch CE, Bachschmid MM, Matsui R. Regulation of neovascularization by S-glutathionylation via the Wnt5a/sFlt-1 pathway. Biochem Soc Trans. 2014;42:1665-1670.

[49]

Stefater JA 3rd. Regulation of angiogenesis by a non-canonical Wnt-Flt1 pathway in myeloid cells. Nature. 2011;474:511-515.

[50]

Ambati BK, Nozaki M, Singh N, et al. Corneal avascularity is due to soluble VEGF receptor-1. Nature. 2006;443:993-997.

[51]

Di Zazzo A, Gaudenzi D, Yin J, Coassin M, Fernandes M, Dana R, Bonini S. Corneal angiogenic privilege and its failure. Exp Eye Res. 2021;204:108457.

[52]

McKenna CC, Ojeda AF, Spurlin J 3rd. Sema3A maintains corneal avascularity during development by inhibiting Vegf induced angioblast migration. Dev Biol. 2014;391:241-250.

[53]

Seo S, Singh HP, Lacal PM, et al. Forkhead box transcription factor FoxC1 preserves corneal transparency by regulating vascular growth. Proc Natl Acad Sci USA. 2012;109:2015-2020.

[54]

Karki S, Ngo DTM, Farb MG, et al. WNT5A regulates adipose tissue angiogenesis via antiangiogenic VEGF-A165b in obese humans. Am J Physiol Heart Circ Physiol. 2017;313:H200-H206.

[55]

Zhao G, Cheng XW, Piao L, et al. The soluble VEGF receptor sFlt-1 contributes to impaired neovascularization in aged mice. Aging Dis. 2017;8:287-300.

[56]

Jiangxue H, Liling Y, Fang X, et al. Wnt5a-Flt1 activation contributes to preterm altered cerebral angiogenesis after prenatal inflammation. Pediatr Neonatol. 2023;64:528-537.

[57]

Bats M-L, Peghaire C, Delobel V, Dufourcq P, Couffinhal T, Duplàa C. Wnt/frizzled signaling in endothelium: a major player in blood-retinal-and blood-brain-barrier integrity. Cold Spring Harb Perspect Med. 2022;12:a041219.

[58]

Boivin G, Faget J, Ancey PB, et al. Durable and controlled depletion of neutrophils in mice. Nat Commun. 2020;11:2762.

[59]

Geng B-C, Choi K-H, Wang S-Z, et al. A simple, quick, and efficient CRISPR/Cas9 genome editing method for human induced pluripotent stem cells. Acta Pharmacol Sin. 2020;41:1427-1432.

[60]

Ellis S, Lin EJ, Tartar D. Immunology of wound healing. Curr Dermatol Rep. 2018;7:350-358.

[61]

Wallace HA, Basehore BM, Zito PM. Wound Healing Phases. StatPearls Publishing; 2021.

[62]

Sabbatini M, Magnelli V, Renò F. NETosis in wound healing: when enough is enough. Cells. 2021;10:494.

[63]

Basso FG, Pansani TN, Turrioni AP, Soares DG, de Souza Costa CA, Hebling J. Tumor necrosis factor-α and interleukin (IL)-1β IL-6, and IL-8 impair in vitro migration and induce apoptosis of gingival fibroblasts and epithelial cells, delaying wound healing. J Periodontol. 2016;87:990-996.

[64]

Xu T, Dong Z, Wang X, et al. IL-1β induces increased tight junction permeability in bovine mammary epithelial cells via the IL-1β-ERK1/2-MLCK axis upon blood-milk barrier damage. J Cell Biochem. 2018;119:9028-9041.

[65]

Tavakkoli F, Eleiwa TK, Elhusseiny AM, et al. Corneal stem cells niche and homeostasis impacts in regenerative medicine: concise review. Eur J Ophthalmol. 2023;33:1536-1552.

[66]

Soleimani M, Cheraqpour K, Koganti R, Baharnoori SM, Djalilian AR. Concise review: bioengineering of limbal stem cell niche. Bioengineering. 2023;10:111.

[67]

Nakatsu MN, Ding Z, Ng MY, Truong TT, Yu F, Deng SX. Wnt/β-catenin signaling regulates proliferation of human cornea epithelial stem/progenitor cells. Invest Ophthalmol Vis Sci. 2011;52:4734-4741.

[68]

Lee HJ, Wolosin JM, Chung SH. Divergent effects of Wnt/β-catenin signaling modifiers on the preservation of human limbal epithelial progenitors according to culture condition. Sci Rep. 2017;7:15241.

[69]

Zhang C, Mei H, Robertson SYT, Lee HJ, Deng SX, Zheng JJ. A small-molecule Wnt mimic improves human limbal stem cell ex vivo expansion. iScience. 2020;23:101075.

[70]

Shah R, Spektor TM, Weisenberger DJ, et al. Reversal of dual epigenetic repression of non-canonical Wnt-5a normalises diabetic corneal epithelial wound healing and stem cells. Diabetologia. 2023;66:1943-1958.

[71]

Korn C, Scholz B, Hu J, et al. Endothelial cell-derived non-canonical Wnt ligands control vascular pruning in angiogenesis. Development. 2014;141:1757-1766.

[72]

Hu JJ, Liu X, Xia S, et al. FDA-approved disulfiram inhibits pyroptosis by blocking gasdermin D pore formation. Nat Immunol. 2020;21:736-745.

[73]

Lanz J, Biniaz-Harris N, Kuvaldina M, Jain S, Lewis K, Fallon BA. Disulfiram: mechanisms, applications, and challenges. Antibiotics. 2023;12:524.

[74]

Deng W, Yang Z, Yue H, Ou Y, Hu W, Sun P. Disulfiram suppresses NLRP3 inflammasome activation to treat peritoneal and gouty inflammation. Free Radic Biol Med. 2020;152:8-17.

[75]

Lurje I, Gaisa NT, Weiskirchen R, Tacke F. Mechanisms of organ fibrosis: emerging concepts and implications for novel treatment strategies. Mol Aspects Med. 2023;92:101191.

[76]

Clausen BE, Burkhardt C, Reith W, Renkawitz R, Förster I. Conditional gene targeting in macrophages and granulocytes using LysMcre mice. Transgenic Res. 1999;8:265-277.

[77]

Chen P, Park KH, Zhang L, Lucas AR, Chandler HL, Zhu H. Mouse corneal transplantation. Methods Mol Biol. 2023;2597:19-24.

[78]

Ramirez MLG, Poreba M, Snipas SJ, Groborz K, Drag M, Salvesen GS. Extensive peptide and natural protein substrate screens reveal that mouse caspase-11 has much narrower substrate specificity than caspase-1. J Biol Chem. 2018;293:7058-7067.

[79]

Man SM, Zhu Q, Zhu L, et al. Critical role for the DNA sensor AIM2 in stem cell proliferation and cancer. Cell. 2015;162:45-58.

[80]

Swamydas M, Lionakis MS. Isolation, purification and labeling of mouse bone marrow neutrophils for functional studies and adoptive transfer experiments. J Vis Exp. 2013;77:e50586.

[81]

Crowley LC, Scott AP, Marfell BJ, Boughaba JA, Chojnowski G, Waterhouse NJ. Measuring cell death by propidium iodide uptake and flow cytometry. Cold Spring Harb Protoc. 2016;2016(7).

RIGHTS & PERMISSIONS

2024 The Author(s). Clinical and Translational Medicine published by John Wiley & Sons Australia, Ltd on behalf of Shanghai Institute of Clinical Bioinformatics.

AI Summary AI Mindmap
PDF

91

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/