A hidden proteome encoded by circRNAs in human placentas: Implications for uncovering preeclampsia pathogenesis

Huanqiang Zhao , Yu Xiong , Zixiang Zhou , Qixin Xu , Yang Zi , Xiujie Zheng , Shiguo Chen , Xirong Xiao , Lili Gong , Huangfang Xu , Lidong Liu , Huiqing Lu , Yutong Cui , Shuyi Shao , Jin Zhang , Jing Ma , Qiongjie Zhou , Duan Ma , Xiaotian Li

Clinical and Translational Medicine ›› 2024, Vol. 14 ›› Issue (7) : e1759

PDF
Clinical and Translational Medicine ›› 2024, Vol. 14 ›› Issue (7) : e1759 DOI: 10.1002/ctm2.1759
RESEARCH ARTICLE

A hidden proteome encoded by circRNAs in human placentas: Implications for uncovering preeclampsia pathogenesis

Author information +
History +
PDF

Abstract

• A hidden circRNA-encoded proteome in the human placenta was extensively identified and systematically characterised.

• The circRNA-encoded proteins (CEPs) are potentially related to placental development and associated disorders.

• A novel conserved CEP circPRKCB119aa enhanced trophoblast autophagy by inhibiting phosphorylation of its cognate linear-spliced isoform protein kinase C (PKC) β in preeclampsia.

Keywords

circRNA-encoded protein / circular RNA / placenta / preeclampsia

Cite this article

Download citation ▾
Huanqiang Zhao, Yu Xiong, Zixiang Zhou, Qixin Xu, Yang Zi, Xiujie Zheng, Shiguo Chen, Xirong Xiao, Lili Gong, Huangfang Xu, Lidong Liu, Huiqing Lu, Yutong Cui, Shuyi Shao, Jin Zhang, Jing Ma, Qiongjie Zhou, Duan Ma, Xiaotian Li. A hidden proteome encoded by circRNAs in human placentas: Implications for uncovering preeclampsia pathogenesis. Clinical and Translational Medicine, 2024, 14(7): e1759 DOI:10.1002/ctm2.1759

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

ZhouWY, CaiZR, LiuJ, WangDS, JuHQ, XuRH. Circular RNA: metabolism, functions and interactions with proteins. Mol Cancer. 2020;19:172.

[2]

HoldtLM, Kohlmaier A, TeupserD. Molecular roles and function of circular RNAs in eukaryotic cells. Cell Mol Life Sci. 2018;75:1071-1098.

[3]

XiaX, LiX, LiF, et al. A novel tumor suppressor protein encoded by circular AKT3 RNA inhibits glioblastoma tumorigenicity by competing with active phosphoinositide-dependent kinase-1. Mol Cancer. 2019;18:131.

[4]

LegniniI, Di Timoteo G, RossiF, et al. Circ-ZNF609 is a circular RNA that can be translated and functions in myogenesis. Mol Cell. 2017;66:22-37. e29.

[5]

PamudurtiNR, BartokO, JensM, et al. Translation of circRNAs. Mol Cell. 2017;66:9-21. e27.

[6]

ZhengX, ChenL, ZhouY, et al. A novel protein encoded by a circular RNA circPPP1R12A promotes tumor pathogenesis and metastasis of colon cancer via Hippo-YAP signaling. Mol Cancer. 2019;18:47.

[7]

KochL. RNA: translated circular RNAs. Nat Rev Genet. 2017;18:272-273.

[8]

LiF, CaiY, DengS, et al. A peptide CORO1C-47aa encoded by the circular noncoding RNA circ-0000437 functions as a negative regulator in endometrium tumor angiogenesis. J Biol Chem. 2021;297:101182.

[9]

YangY, FanX, MaoM, et al. Extensive translation of circular RNAs driven by n(6)-methyladenosine. Cell Res. 2017;27:626-641.

[10]

WenSY, QadirJ, YangBB. Circular RNA translation: novel protein isoforms and clinical significance. Trends Mol Med. 2022;28:405-420.

[11]

FanX, YangY, ChenC, Wang Z. Pervasive translation of circular RNAs driven by short IRES-like elements. Nat Commun. 2022;13:3751.

[12]

van HeeschS, WitteF, Schneider-LunitzV, et al. The translational landscape of the human heart. Cell. 2019;178:242-260. e229.

[13]

LeiM, ZhengG, NingQ, Zheng J, DongD. Translation and functional roles of circular RNAs in human cancer. Mol Cancer. 2020;19:30.

[14]

WuP, MoY, PengM, et al. Emerging role of tumor-related functional peptides encoded by lncRNA and circRNA. Mol Cancer. 2020;19:22.

[15]

ZhangM, HuangN, YangX, et al. A novel protein encoded by the circular form of the SHPRH gene suppresses glioma tumorigenesis. Oncogene. 2018;37:1805-1814.

[16]

YangY, GaoX, ZhangM, et al. Novel role of FBXW7 circular RNA in repressing glioma tumorigenesis. J Natl Cancer Inst. 2018;110:304-315.

[17]

LiangWC, WongCW, LiangPP, et al. Translation of the circular RNA circbeta-catenin promotes liver cancer cell growth through activation of the Wnt pathway. Genome Biol. 2019;20:84.

[18]

ZhaoH, ZhouQ, LiX. Protein bait hypothesis: circRNA-encoded proteins competitively inhibit cognate functional isoforms. Trends Genet. 2021;37:616-624.

[19]

LiH, LanT, LiuH, et al. IL-6-induced cGGNBP2 encodes a protein to promote cell growth and metastasis in intrahepatic cholangiocarcinoma. Hepatology. 2022;75:1402-1419.

[20]

BurtonGJ, Jauniaux E. What is the placenta? Am J Obstet Gynecol. 2015;213. S6 e1, S6-8.

[21]

BurtonGJ, FowdenAL. The placenta: a multifaceted, transient organ. Philos Trans R Soc Lond B Biol Sci. 2015;370:20140066.

[22]

ChappellLC, CluverCA, KingdomJ, Tong S. Pre-eclampsia. Lancet. 2021;398:341-354.

[23]

MaB, ZhaoH, GongL, et al. Differentially expressed circular RNAs and the competing endogenous RNA network associated with preeclampsia. Placenta. 2021;103:232-241.

[24]

BaoD, ZhuangC, JiaoY, Yang L. The possible involvement of circRNA DMNT1/p53/JAK/STAT in gestational diabetes mellitus and preeclampsia. Cell Death Discov. 2022;8:121.

[25]

GongS, Gaccioli F, DopieralaJ, et al. The RNA landscape of the human placenta in health and disease. Nat Commun. 2021;12:2639.

[26]

ZhaoH, GongL, WuS, et al. The inhibition of protein kinase c beta contributes to the pathogenesis of preeclampsia by activating autophagy. EBioMedicine. 2020;56:102813.

[27]

JiP, WuW, ChenS, et al. Expanded expression landscape and prioritization of circular RNAs in mammals. Cell Rep. 2019;26:3444-3460. e3445.

[28]

MartinM. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet journal. 2011;17:10-12.

[29]

LangmeadB, Salzberg SL. Fast gapped-read alignment with bowtie 2. Nat Methods. 2012;9:357-359.

[30]

KimD, PerteaG, TrapnellC, Pimentel H, KelleyR, SalzbergSL. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 2013;14:R36.

[31]

KimD, Salzberg SL. TopHat-fusion: an algorithm for discovery of novel fusion transcripts. Genome Biol. 2011;12:R72.

[32]

ZhangXO, DongR, ZhangY, et al. Diverse alternative back-splicing and alternative splicing landscape of circular RNAs. Genome Res. 2016;26:1277-1287.

[33]

GaoY, WangJ, ZhaoF. CIRI: an efficient and unbiased algorithm for de novo circular RNA identification. Genome Biol. 2015;16:4.

[34]

IngoliaNT, BrarGA, RouskinS, McGeachy AM, WeissmanJS. The ribosome profiling strategy for monitoring translation in vivo by deep sequencing of ribosome-protected mRNA fragments. Nat Protoc. 2012;7:1534-1550.

[35]

MorlanJD, QuK, SinicropiDV. Selective depletion of rRNA enables whole transcriptome profiling of archival fixed tissue. PLoS One. 2012;7:e42882.

[36]

GlazarP, Papavasileiou P, RajewskyN. circBase: a database for circular RNAs. RNA. 2014;20:1666-1670.

[37]

ChenX, HanP, ZhouT, Guo X, SongX, LiY. CircRNADb: a comprehensive database for human circular RNAs with protein-coding annotations. Sci Rep. 2016;6:34985.

[38]

UniProt Consortium. UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res. 2021;49:D480-D489

[39]

MaJ, Saghatelian A, ShokhirevMN. The influence of transcript assembly on the proteogenomics discovery of microproteins. PLoS One. 2018;13:e0194518.

[40]

KimMS, PintoSM, GetnetD, et al. A draft map of the human proteome. Nature. 2014;509:575-581.

[41]

SavitskiMM, Wilhelm M, HahneH, KusterB, Bantscheff M. A scalable approach for protein false discovery rate estimation in large proteomic data sets. Mol Cell Proteomics. 2015;14:2394-2404.

[42]

HansenTB. Signal and noise in circRNA translation. Methods. 2021;196:68-73.

[43]

WilkinsMR, Gasteiger E, BairochA, et al. Protein identification and analysis tools in the ExPASy server. Methods Mol Biol. 1999;112:531-552.

[44]

JumperJ, EvansR, PritzelA, et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596:583-589.

[45]

Almagro ArmenterosJJ, Tsirigos KD, SonderbyCK, et al. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat Biotechnol. 2019;37:420-423.

[46]

KroghA, Larsson B, von HeijneG, SonnhammerEL. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol. 2001;305:567-580.

[47]

Almagro ArmenterosJJ, Sonderby CK, SonderbySK, NielsenH, Winther O. DeepLoc: prediction of protein subcellular localization using deep learning. Bioinformatics. 2017;33:3387-3395.

[48]

ZhaoGN, TianZW, TianT, et al. TMBIM1 is an inhibitor of adipogenesis and its depletion promotes adipocyte hyperplasia and improves obesity-related metabolic disease. Cell Metab. 2021;33:1640-1654. e1648.

[49]

HuJ, MengY, ZhangZ, et al. MARCH5 RNA promotes autophagy, migration, and invasion of ovarian cancer cells. Autophagy. 2017;13:333-344.

[50]

EndeshawM, AbebeF, WorkuS, Menber L, AssressM, AssefaM. Obesity in young age is a risk factor for preeclampsia: a facility based case-control study, Northwest Ethiopia. BMC Pregnancy Childbirth. 2016;16:237.

[51]

WangL, ParkHJ, DasariS, Wang S, KocherJP, LiW. CPAT: coding-potential assessment tool using an alignment-free logistic regression model. Nucleic Acids Res. 2013;41:e74.

[52]

ZhaoJ, WuJ, XuT, YangQ, HeJ, SongX. IRESfinder: identifying RNA internal ribosome entry site in eukaryotic cell using framed k-mer features. J Genet Genomics. 2018;45:403-406.

[53]

SifakisS, Androutsopoulos VP, PontikakiA, et al. Placental expression of PAPPA, PAPPA-2 and PLAC-1 in pregnancies is associated with FGR. Mol Med Rep. 2018;17:6435-6440.

[54]

FanX, YangY, ChenC, Wang Z. Pervasive translation of circular RNAs driven by short IRES-like elements. bioRxiv. 2020.

[55]

LuS, ZhangJ, LianX, et al. A hidden human proteome encoded by ‘non-coding’ genes. Nucleic Acids Res. 2019;47:8111-8125.

[56]

RanaS, BurkeSD, KarumanchiSA. Imbalances in circulating angiogenic factors in the pathophysiology of preeclampsia and related disorders. Am J Obstet Gynecol. 2022;226:S1019-S1034.

[57]

WangT, CuiY, JinJ, et al. Translating mRNAs strongly correlate to proteins in a multivariate manner and their translation ratios are phenotype specific. Nucleic Acids Res. 2013;41:4743-4754.

[58]

LiuM, WangQ, ShenJ, Yang BB, DingX. Circbank: a comprehensive database for circRNA with standard nomenclature. RNA Biol. 2019;16:899-905.

[59]

NelsonTJ, AlkonDL. Neuroprotective versus tumorigenic protein kinase c activators. Trends Biochem Sci. 2009;34:136-145.

[60]

SteinbergSF. Structural basis of protein kinase c isoform function. Physiol Rev. 2008;88:1341-1378.

[61]

NakashimaA, TsudaS, KusabirakiT, et al. Current understanding of autophagy in pregnancy. Int J Mol Sci. 2019;20:2342.

[62]

TanidaI, UenoT, KominamiE. LC3 and autophagy. Methods Mol Biol. 2008;445:77-88.

[63]

Sanchez-MartinP, Komatsu M. p62/SQSTM1 – steering the cell through health and disease. J Cell Sci. 2018:131.

[64]

MizushimaN, Yoshimori T, LevineB. Methods in mammalian autophagy research. Cell. 2010;140:313-326.

[65]

RajappaA, Banerjee S, SharmaV, KhandeliaP. Circular RNAs: emerging role in cancer diagnostics and therapeutics. Front Mol Biosci. 2020;7:577938.

[66]

ZhiX, ZhangJ, ChengZ, Bian L, QinJ. CircLgr4 drives colorectal tumorigenesis and invasion through Lgr4-targeting peptide. Int J Cancer. 2019.

[67]

PfannerN, Warscheid B, WiedemannN. Mitochondrial proteins: from biogenesis to functional networks. Nat Rev Mol Cell Biol. 2019;20:267-284.

[68]

KohlrauschFB, KeefeDL. Telomere erosion as a placental clock: from placental pathologies to adverse pregnancy outcomes. Placenta. 2020;97:101-107.

RIGHTS & PERMISSIONS

2024 The Author(s). Clinical and Translational Medicine published by John Wiley & Sons Australia, Ltd on behalf of Shanghai Institute of Clinical Bioinformatics.

AI Summary AI Mindmap
PDF

236

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/