Validation and depth evaluation of recurrent neural network-based ultra low-pass genome sequencing for the detection of absence of heterozygosity: A multi-centre study of 409 cases

Yeqing Qian , Jianjun Zhu , Zhiguo Tang , Yan Sun , Zhonghua Wang , Fei Tang , Yun Yang , Linlin Fan , Yixi Sun , Bei Liu , Min Chen , Yuqin Luo , Junjie Hu , Kai Yan , Jianfen Man , Lina Wang , Cangcang Jia , Ping Tang , Xinyi Zhu , Chaohong Wang , Junxiang Tang , Yuanyuan Xia , Xueqin Guo , Kang Zhang , Xiaoli Wang , Suping Li , Lijie Song , Jiansheng Zhu , Minyue Dong

Clinical and Translational Medicine ›› 2024, Vol. 14 ›› Issue (7) : e1752

PDF
Clinical and Translational Medicine ›› 2024, Vol. 14 ›› Issue (7) : e1752 DOI: 10.1002/ctm2.1752
LETTER TO THE JOURNAL

Validation and depth evaluation of recurrent neural network-based ultra low-pass genome sequencing for the detection of absence of heterozygosity: A multi-centre study of 409 cases

Author information +
History +
PDF

Cite this article

Download citation ▾
Yeqing Qian, Jianjun Zhu, Zhiguo Tang, Yan Sun, Zhonghua Wang, Fei Tang, Yun Yang, Linlin Fan, Yixi Sun, Bei Liu, Min Chen, Yuqin Luo, Junjie Hu, Kai Yan, Jianfen Man, Lina Wang, Cangcang Jia, Ping Tang, Xinyi Zhu, Chaohong Wang, Junxiang Tang, Yuanyuan Xia, Xueqin Guo, Kang Zhang, Xiaoli Wang, Suping Li, Lijie Song, Jiansheng Zhu, Minyue Dong. Validation and depth evaluation of recurrent neural network-based ultra low-pass genome sequencing for the detection of absence of heterozygosity: A multi-centre study of 409 cases. Clinical and Translational Medicine, 2024, 14(7): e1752 DOI:10.1002/ctm2.1752

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Yauy K, de Leeuw N, HG Yntema, Pfundt R, Gilissen C. Accurate detection of clinically relevant uniparental disomy from exome sequencing data. Genet Med. 2020;22(4):803-808.

[2]

Dong Z, Zhang J, Hu P, et al. Low-pass whole-genome sequencing in clinical cytogenetics: a validated approach. Genet Med. 2016;18(9):940-948.

[3]

Sahoo T, Dzidic N, Strecker MN, et al. Comprehensive genetic analysis of pregnancy loss by chromosomal microarrays: outcomes, benefits, and challenges. Genet Med. 2017;19(1):83-89.

[4]

Xiang J, Li R, He J, et al. Clinical impacts of genome-wide noninvasive prenatal testing for rare autosomal trisomy. Am J Obstet Gynecol MFM. 2023;5(1):100790.

[5]

Wang H, Dong Z, Zhang R, et al. Low-pass genome sequencing versus chromosomal microarray analysis: implementation in prenatal diagnosis. Genet Med. 2020;22(3):500-510.

[6]

Chau MHK, Wang H, Lai Y, et al. Low-pass genome sequencing: a validated method in clinical cytogenetics. Hum Genet. 2020;139(11):1403-1415.

[7]

Clinical Genetics Group Of Medical Genetics Branch Chinese Medical A, Professional Committee For Prenatal Diagnosis Of Genetic Diseases Medical Genetics Branch Of Chinese Medical A, Group Of Genetic Disease P, Control Birth Defect P, Control Committee Of Chinese Society Of Preventive M. Expert consensus on the application of low-depth whole genome sequencing in prenatal diagnosis. Zhonghua Yi Xue Yi Chuan Xue Za Zhi. 2019;36(4):293-296.

[8]

Qian Y, Sun Y, Guo X, et al. Validation and depth evaluation of low-pass genome sequencing in prenatal diagnosis using 387 amniotic fluid samples. J Med Genet. 2023;60(10):933-938.

[9]

Dong Z, Chau MHK, Zhang Y, et al. Low-pass genome sequencing-based detection of absence of heterozygosity: validation in clinical cytogenetics. Genet Med. 2021;23(7):1225-1233.

[10]

Li Y, Anderson LA, Ginns EI, Devlin JJ. Cost effectiveness of karyotyping, chromosomal microarray analysis, and targeted next-generation sequencing of patients with unexplained global developmental delay or intellectual disability. Mol Diagn Ther. 2018;22(1):129-138.

RIGHTS & PERMISSIONS

2024 The Author(s). Clinical and Translational Medicine published by John Wiley & Sons Australia, Ltd on behalf of Shanghai Institute of Clinical Bioinformatics.

AI Summary AI Mindmap
PDF

173

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/