Single-cell RNA sequencing in exploring the pathogenesis of diabetic retinopathy

Xinzi Zhang , Fang Zhang , Xun Xu

Clinical and Translational Medicine ›› 2024, Vol. 14 ›› Issue (7) : e1751

PDF
Clinical and Translational Medicine ›› 2024, Vol. 14 ›› Issue (7) : e1751 DOI: 10.1002/ctm2.1751
REVIEW

Single-cell RNA sequencing in exploring the pathogenesis of diabetic retinopathy

Author information +
History +
PDF

Abstract

• Progress in scRNA-seq for diabetic retinopathy (DR) research includes studies on DR patients, non-human primates, and the prevalent mouse models.

• scRNA-seq facilitates the identification of differentially expressed genes, pivotal cell subpopulations, and complex cell-cell interactions in DR at single-cell level.

• Future scRNA-seq applications in DR should target specific patient subsets and integrate with single-cell and spatial multi-omics approaches.

Keywords

diabetic retinopathy / pathogenesis / single-cell RNA sequencing

Cite this article

Download citation ▾
Xinzi Zhang, Fang Zhang, Xun Xu. Single-cell RNA sequencing in exploring the pathogenesis of diabetic retinopathy. Clinical and Translational Medicine, 2024, 14(7): e1751 DOI:10.1002/ctm2.1751

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

CheungN, Mitchell P, WongTY. Diabetic retinopathy. Lancet. 2010;376(9735):124-136.

[2]

YauJWY, RogersSL, KawasakiR, et al. Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care. 2012;35(3):556-564.

[3]

TeoZL, ThamYC, YuM, et al. Global prevalence of diabetic retinopathy and projection of burden through 2045: systematic review and meta-analysis. Ophthalmology. 2021;128(11):1580-1591.

[4]

Grading diabetic retinopathy from stereoscopic color fundus photographs—an extension of the modified Airlie house classification: ETDRS report number 10. Ophthalmology. 1991;98(5):786-806.

[5]

ShuklaUV, Tripathy K. Diabetic retinopathy. StatPearls. StatPearls Publishing; 2024. Accessed February 20, 2024.

[6]

JampolLM, Glassman AR, SunJ. Evaluation and care of patients with diabetic retinopathy. N Engl J Med. 2020;382(17):1629-1637.

[7]

AntonettiDA, SilvaPS, StittAW. Current understanding of the molecular and cellular pathology of diabetic retinopathy. Nat Rev Endocrinol. 2021;17(4):195-206.

[8]

WongTY, CheungCMG, LarsenM, Sharma S, SimóR. Diabetic retinopathy. Nat Rev Dis Primers. 2016;2(1):1-17.

[9]

LiX, WangCY. From bulk, single-cell to spatial RNA sequencing. Int J Oral Sci. 2021;13(1):1-6.

[10]

TangF, Barbacioru C, WangY, et al. mRNA-Seq whole-transcriptome analysis of a single cell. Nat Methods. 2009;6(5):377-382.

[11]

KashimaY, Sakamoto Y, KanekoK, SekiM, SuzukiY, SuzukiA. Single-cell sequencing techniques from individual to multiomics analyses. Exp Mol Med. 2020;52(9):1419-1427.

[12]

JovicD, LiangX, ZengH, Lin L, XuF, LuoY. Single-cell RNA sequencing technologies and applications: a brief overview. Clin Transl Med. 2022;12(3):e694.

[13]

PotterSS. Single-cell RNA sequencing for the study of development, physiology and disease. Nat Rev Nephrol. 2018;14(8):479-492.

[14]

PapalexiE, SatijaR. Single-cell RNA sequencing to explore immune cell heterogeneity. Nat Rev Immunol. 2018;18(1):35-45.

[15]

BärthelS, Falcomatà C, RadR, TheisFJ, SaurD. Single-cell profiling to explore pancreatic cancer heterogeneity, plasticity and response to therapy. Nat Cancer. 2023;4(4):454-467.

[16]

PaikDT, ChoS, TianL, Chang HY, WuJC. Single-cell RNA sequencing in cardiovascular development, disease and medicine. Nat Rev Cardiol. 2020;17(8):457-473.

[17]

PiweckaM, Rajewsky N, Rybak-WolfA. Single-cell and spatial transcriptomics: deciphering brain complexity in health and disease. Nat Rev Neurol. 2023;19(6):346-362.

[18]

SavianoA, Henderson NC, BaumertTF. Single-cell genomics and spatial transcriptomics: discovery of novel cell states and cellular interactions in liver physiology and disease biology. J Hepatol. 2020;73(5):1219-1230.

[19]

GuoW, ZhouB, BieF, et al. Single-cell RNA sequencing analysis reveals transcriptional heterogeneity of multiple primary lung cancer. Clin Transl Med. 2023;13(10):e1453.

[20]

LinQ, ZhouY, MaJ, et al. Single-cell analysis reveals the multiple patterns of immune escape in the nasopharyngeal carcinoma microenvironment. Clin Transl Med. 2023;13(6):e1315.

[21]

YangJ, TanH, SunM, et al. Single-cell RNA sequencing reveals a mechanism underlying the susceptibility of the left atrial appendage to intracardiac thrombogenesis during atrial fibrillation. Clin Transl Med. 2023;13(6):e1297.

[22]

LiuXY, LiuYB, XuJC, et al. Single-cell transcriptomic analysis deciphers key transitional signatures associated with oncogenic evolution in human intramucosal oesophageal squamous cell carcinoma. Clin Transl Med. 2023;13(3):e1203.

[23]

MacoskoEZ, BasuA, SatijaR, et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell. 2015;161(5):1202-1214.

[24]

OrozcoLD, OwenLA, HofmannJ, et al. A systems biology approach uncovers novel disease mechanisms in age-related macular degeneration. Cell Genomics. 2023;3(6):100302.

[25]

DabouzR, ChengCWH, AbramP, et al. An allosteric interleukin-1 receptor modulator mitigates inflammation and photoreceptor toxicity in a model of retinal degeneration. J Neuroinflamm. 2020;17:359.

[26]

DrohoS, Thomson BR, MakindeHM, CudaCM, Perlman H, LavineJA. Ocular macrophage origin and heterogeneity during steady state and experimental choroidal neovascularization. J Neuroinflamm. 2020;17:341.

[27]

VoigtAP, Mulfaul K, MullinNK, et al. Single-cell transcriptomics of the human retinal pigment epithelium and choroid in health and macular degeneration. Proc Natl Acad Sci U S A. 2019;116(48):24100-24107.

[28]

MonavarfeshaniA, YanW, PappasC, et al. Transcriptomic analysis of the ocular posterior segment completes a cell atlas of the human eye. Proc Natl Acad Sci U S A. 2023;120(34):e2306153120.

[29]

TranNM, Shekhar K, WhitneyIE, et al. Single-cell profiles of retinal ganglion cells differing in resilience to injury reveal neuroprotective genes. Neuron. 2019;104(6):1039-1055.

[30]

van ZylT, YanW, McAdamsA, et al. Cell atlas of aqueous humor outflow pathways in eyes of humans and four model species provides insight into glaucoma pathogenesis. Proc Natl Acad Sci U S A. 2020;117(19):10339-10349.

[31]

Van HoveI, De Groef L, BoeckxB, et al. Single-cell transcriptome analysis of the Akimba mouse retina reveals cell-type-specific insights into the pathobiology of diabetic retinopathy. Diabetologia. 2020;63(10):2235-2248.

[32]

MaP, ZhangP, ChenS, et al. Immune cell landscape of patients with diabetic macular edema by single-cell RNA analysis. Front Pharmacol. 2021;12:754933.

[33]

LiaoD, FanW, LiN, et al. A single cell atlas of circulating immune cells involved in diabetic retinopathy. iScience. 2024;27(2):109003.

[34]

HuZ, MaoX, ChenM, et al. Single-cell transcriptomics reveals novel role of microglia in fibrovascular membrane of proliferative diabetic retinopathy. Diabetes. 2022;71(4):762-773.

[35]

GaoN, HaoS, HuangG, Hao W, SuL. The integrated transcriptome bioinformatics analysis identifies key genes and cellular components for proliferative diabetic retinopathy. PLoS One. 2022;17(11):e0277952.

[36]

XuX, ZhangC, TangG, Wang N, FengY. Single-cell transcriptome profiling highlights the role of APP in blood vessels in assessing the risk of patients with proliferative diabetic retinopathy developing Alzheimer's disease. Front Cell Dev Biol. 2024;11:1328979.

[37]

Corano-ScheriK, LavineJA, TedeschiTR, Thomson BR, FawziAA. Single cell transcriptomic analysis of proliferative diabetic retinopathy fibrovascular membranes reveals AEBP1 as fibrogenesis modulator. JCI Insight. 2023;8(23):e172062.

[38]

XiaoY, HuX, FanS, et al. Single-cell transcriptome profiling reveals the suppressive role of retinal neurons in microglia activation under diabetes mellitus. Front Cell Dev Biol. 2021;9:680947.

[39]

BertelliPM, Pedrini E, HughesD, et al. Long term high glucose exposure induces premature senescence in retinal endothelial cells. Front Physiol. 2022;13:929118.

[40]

NiuT, FangJ, ShiX, et al. Pathogenesis study based on high-throughput single-cell sequencing analysis reveals novel transcriptional landscape and heterogeneity of retinal cells in type 2 diabetic mice. Diabetes. 2021;70(5):1185-1197.

[41]

MaoP, ShenY, MaoX, LiuK, ZhongJ. The single-cell landscape of alternative transcription start sites of diabetic retina. Exp Eye Res. 2023;233:109520.

[42]

ChenK, WangY, HuangY, et al. Cross-species scRNA-seq reveals the cellular landscape of retina and early alterations in type 2 diabetes mice. Genomics. 2023;115(4):110644.

[43]

XuY, XiangZ, EW, et al. Single-cell transcriptomes reveal a molecular link between diabetic kidney and retinal lesions. Commun Biol. 2023;6(1):912.

[44]

YaoX, ZhaoZ, ZhangW, et al. Specialized retinal endothelial cells modulate blood‒retina barrier in diabetic retinopathy. Diabetes. 2024;73(2):225-236.

[45]

ChenB, ZouJ, XieL, et al. WNT-inhibitory factor 1-mediated glycolysis protects photoreceptor cells in diabetic retinopathy. J Transl Med. 2024;22:245.

[46]

ChengY, ZhangM, XuR, et al. p53 accelerates endothelial cell senescence in diabetic retinopathy by enhancing FoxO3a ubiquitylation and degradation via UBE2L6. Exp Gerontol. 2024;188:112391.

[47]

SunL, WangR, HuG, et al. Single cell RNA sequencing (scRNA-Seq) deciphering pathological alterations in streptozotocin-induced diabetic retinas. Exp Eye Res. 2021;210:108718.

[48]

ZhangR, HuangC, ChenY, Li T, PangL. Single-cell transcriptomic analysis revealing changes in retinal cell subpopulation levels and the pathways involved in diabetic retinopathy. Ann Transl Med. 2022;10(10):562.

[49]

LvK, YingH, HuG, HuJ, JianQ, Zhang F. Integrated multi-omics reveals the activated retinal microglia with intracellular metabolic reprogramming contributes to inflammation in STZ-induced early diabetic retinopathy. Front Immunol. 2022;13:942768.

[50]

BenS, MaY, BaiY, et al. Microglia-endothelial cross-talk regulates diabetes-induced retinal vascular dysfunction through remodeling inflammatory microenvironment. iScience. 2024;27(3):109145.

[51]

HeC, LiuY, HuangZ, et al. A specific RIP3+ subpopulation of microglia promotes retinopathy through a hypoxia-triggered necroptotic mechanism. Proc Natl Acad Sci U S A. 2021;118(11):e2023290118.

[52]

Crespo-GarciaS, Tsuruda PR, DejdaA, et al. Pathological angiogenesis in retinopathy engages cellular senescence and is amenable to therapeutic elimination via BCL-xL inhibition. Cell Metab. 2021;33(4):818-832.e7.

[53]

WenZ, HeX, WangJ, et al. Hyperlipidemia induces proinflammatory responses by activating STING pathway through IRE1α-XBP1 in retinal endothelial cells. J Nutr Biochem. 2023;112:109213.

[54]

LuoQ, JiangZ, JiangJ, et al. Tsp-1+ microglia attenuate retinal neovascularization by maintaining the expression of Smad3 in endothelial cells through exosomes with decreased miR-27a-5p. Theranostics. 2023;13(11):3689-3706.

[55]

LiuZ, ShiH, XuJ, et al. Single-cell transcriptome analyses reveal microglia types associated with proliferative retinopathy. JCI Insight. 2022;7(23):e160940.

[56]

BaiQ, WangX, YanH, et al. Microglia-derived Spp1 promotes pathological retinal neovascularization via activating endothelial Kit/Akt/mTOR signaling. J Pers Med. 2023;13(1):146.

[57]

XiaM, JiaoL, WangXH, et al. Single-cell RNA sequencing reveals a unique pericyte type associated with capillary dysfunction. Theranostics. 2023;13(8):2515-2530.

[58]

WangY, YangX, LiQ, et al. Single-cell RNA sequencing reveals the Müller subtypes and inner blood–retinal barrier regulatory network in early diabetic retinopathy. Front Mol Neurosci. 2022;15:1048634.

[59]

WangY, YangX, ZhangY, et al. Single-cell RNA sequencing reveals roles of unique retinal microglia types in early diabetic retinopathy. Diabetol Metab Syndr. 2024;16(1):49.

[60]

BaiCW, LuL, ZhangJN, et al. G protein subunit alpha i2's pivotal role in angiogenesis. Theranostics. 2024;14(5):2190-2209.

[61]

HanR, JinM, XuG, HeJ. Progressively decreased HCN1 channels results in cone morphological defects in diabetic retinopathy. J Neurosci. 2022;42(43):8200-8212.

[62]

TangJ, KernTS. Inflammation in diabetic retinopathy. Prog Retin Eye Res. 2011;30(5):343-358.

[63]

YuY, ChenH, SuSB. Neuroinflammatory responses in diabetic retinopathy. J Neuroinflam. 2015;12(1):141.

[64]

BurgosR, MateoC, CantónA, HernándezC, Mesa J, SimóR. Vitreous levels of IGF-I, IGF binding protein 1, and IGF binding protein 3 in proliferative diabetic retinopathy: a case‒control study. Diabetes Care. 2000;23(1):80-83.

[65]

Meyer-SchwickerathR, Pfeiffer A, BlumWF, et al. Vitreous levels of the insulin-like growth factors I and II, and the insulin-like growth factor binding proteins 2 and 3, increase in neovascular eye disease. Studies in nondiabetic and diabetic subjects. J Clin Invest. 1993;92(6):2620-2625.

[66]

RomaniukD, KimsaMW, Strzalka-MrozikB, et al. Gene expression of IGF1, IGF1R, and IGFBP3 in epiretinal membranes of patients with proliferative diabetic retinopathy: preliminary study. Mediators Inflamm. 2013;2013(1):986217.

[67]

KaseS, YokoiM, SaitoW, et al. Increased osteopontin levels in the vitreous of patients with diabetic retinopathy. Ophthalmic Res. 2007;39(3):143-147.

[68]

ZhangX, CheeWK, LiuS, et al. Association of plasma osteopontin with diabetic retinopathy in Asians with type 2 diabetes. Mol Vis. 2018;24:165-173.

[69]

XueY, ShenSQ, JuiJ, et al. CRALBP supports the mammalian retinal visual cycle and cone vision. J Clin Invest. 2015;125(2):727-738.

[70]

MawMA, Kennedy B, KnightA, et al. Mutation of the gene encoding cellular retinaldehyde-binding protein in autosomal recessive retinitis pigmentosa. Nat Genet. 1997;17(2):198-200.

[71]

AndrewsTS, Kiselev VY, McCarthyD, HembergM. Tutorial: guidelines for the computational analysis of single-cell RNA sequencing data. Nat Protoc. 2021;16(1):1-9.

[72]

YaoY, LiJ, ZhouY, et al. Macrophage/microglia polarization for the treatment of diabetic retinopathy. Front Endocrinol. 2023;14:1276225.

[73]

ColonnaM, Butovsky O. Microglia function in the central nervous system during health and neurodegeneration. Annu Rev Immunol. 2017;35:441-468.

[74]

PrinzM, JungS, PrillerJ. Microglia biology: one century of evolving concepts. Cell. 2019;179(2):292-311.

[75]

Padovani-ClaudioDA, Ramos CJ, CapozziME, PennJS. Elucidating glial responses to products of diabetes-associated systemic dyshomeostasis. Prog Retin Eye Res. 2023;94:101151.

[76]

KarlstetterM, ScholzR, RutarM, Wong WT, ProvisJM, LangmannT. Retinal microglia: just bystander or target for therapy? Prog Retin Eye Res. 2015;45:30-57.

[77]

KinuthiaUM, WolfA, LangmannT. Microglia and inflammatory responses in diabetic retinopathy. Front Immunol. 2020;11:564077.

[78]

HuA, Schmidt MHH, HeinigN. Microglia in retinal angiogenesis and diabetic retinopathy. Angiogenesis. 2024.

[79]

LiJ, YuS, LuX, et al. The phase changes of M1/M2 phenotype of microglia/macrophage following oxygen-induced retinopathy in mice. Inflamm Res. 2021;70(2):183-192.

[80]

El-SabaghHA, Abdelghaffar W, LabibAM, et al. Preoperative intravitreal bevacizumab use as an adjuvant to diabetic vitrectomy: histopathologic findings and clinical implications. Ophthalmology. 2011;118(4):636-641.

[81]

IshikawaK, Yoshida S, NakaoS, et al. Periostin promotes the generation of fibrous membranes in proliferative vitreoretinopathy. FASEB J. 2014;28(1):131-142.

[82]

AsatoR, Yoshida S, OguraA, et al. Comparison of gene expression profile of epiretinal membranes obtained from eyes with proliferative vitreoretinopathy to that of secondary epiretinal membranes. PLoS One. 2013;8(1):e54191.

[83]

ZhouRM, WangXQ, YaoJ, et al. Identification and characterization of proliferative retinopathy-related long noncoding RNAs. Biochem Biophys Res Commun. 2015;465(3):324-330.

[84]

UemuraA, Fruttiger M, D'AmorePA, et al. VEGFR1 signaling in retinal angiogenesis and microinflammation. Prog Retin Eye Res. 2021;84:100954.

[85]

HassanJW, Bhatwadekar AD. Senolytics in the treatment of diabetic retinopathy. Front Pharmacol. 2022;13:896907.

[86]

van SplunderH, Villacampa P, Martínez-RomeroA, GrauperaM. Pericytes in the disease spotlight. Trends Cell Biol. 2024;34(1):58-71.

[87]

SweeneyMD, Ayyadurai S, ZlokovicBV. Pericytes of the neurovascular unit: key functions and signaling pathways. Nat Neurosci. 2016;19(6):771-783.

[88]

GaengelK, Genové G, ArmulikA, BetsholtzC. Endothelial-mural cell signaling in vascular development and angiogenesis. Arterioscler Thromb Vasc Biol. 2009;29(5):630-638.

[89]

TonadeD, KernTS. Photoreceptor cells and RPE contribute to the development of diabetic retinopathy. Prog Retin Eye Res. 2021;83:100919.

[90]

TanGS, CheungN, SimóR, CheungGCM, WongTY. Diabetic macular oedema. Lancet Diabetes Endocrinol. 2017;5(2):143-155.

[91]

SerraAM, Waddell J, ManivannanA, XuH, CotterM, ForresterJV. CD11b+ bone marrow-derived monocytes are the major leukocyte subset responsible for retinal capillary leukostasis in experimental diabetes in mouse and express high levels of CCR5 in the circulation. Am J Pathol. 2012;181(2):719-727.

[92]

BechtelTJ, Reyes-Robles T, FadeyiOO, OslundRC. Strategies for monitoring cell–cell interactions. Nat Chem Biol. 2021;17(6):641-652.

[93]

AlmetAA, CangZ, JinS, NieQ. The landscape of cell–cell communication through single-cell transcriptomics. Curr Opin Syst Biol. 2021;26:12-23.

[94]

ArmingolE, Officer A, HarismendyO, LewisNE. Deciphering cell–cell interactions and communication from gene expression. Nat Rev Genet. 2021;22(2):71-88.

[95]

ShaoX, LuX, LiaoJ, Chen H, FanX. New avenues for systematically inferring cell‒cell communication: through single-cell transcriptomics data. Protein Cell. 2020;11(12):866-880.

[96]

KunoR, WangJ, KawanokuchiJ, TakeuchiH, MizunoT, SuzumuraA. Autocrine activation of microglia by tumor necrosis factor-α. J Neuroimmunol. 2005;162(1):89-96.

[97]

TamV, PatelN, TurcotteM, Bossé Y, ParéG, MeyreD. Benefits and limitations of genome-wide association studies. Nat Rev Genet. 2019;20(8):467-484.

[98]

ManolioTA, Collins FS, CoxNJ, et al. Finding the missing heritability of complex diseases. Nature. 2009;461(7265):747-753.

[99]

KhanN, Paterson AD, RoshandelD, et al. Association of IGF1 and VEGFA polymorphisms with diabetic retinopathy in Pakistani population. Acta Diabetol. 2020;57(2):237-245.

[100]

SkolAD, JungSC, SokovicAM, et al. Integration of genomics and transcriptomics predicts diabetic retinopathy susceptibility genes. eLife. 2020;9:e59980.

[101]

GrassiMA, Tikhomirov A, RamalingamS, BelowJE, CoxNJ, NicolaeDL. Genome-wide meta-analysis for severe diabetic retinopathy. Hum Mol Genet. 2011;20(12):2472.

[102]

GrassiMA, Tikhomirov A, RamalingamS, et al. Replication analysis for severe diabetic retinopathy. Invest Ophthalmol Vis Sci. 2012;53(4):2377-2381.

[103]

PollackS, IgoRP, JensenRA, et al. Multiethnic genome-wide association study of diabetic retinopathy using liability threshold modeling of duration of diabetes and glycemic control. Diabetes. 2019;68(2):441-456.

[104]

JagadeeshKA, DeyKK, MontoroDT, et al. Identifying disease-critical cell types and cellular processes by integrating single-cell RNA-sequencing and human genetics. Nat Genet. 2022;54(10):1479-1492.

[105]

MohamedQ, Gillies MC, WongTY. Management of diabetic retinopathy: a systematic review. JAMA. 2007;298(8):902-916.

[106]

Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Research Group, Lachin JM, GenuthS, ClearyP, DavisMD, NathanDM. Retinopathy and nephropathy in patients with type 1 diabetes four years after a trial of intensive therapy. N Engl J Med. 2000;342(6):381-389.

[107]

HuG, GuL, WangR, et al. Ethanolamine as a biomarker and biomarker-based therapy for diabetic retinopathy in glucose-well-controlled diabetic patients. Sci Bull (Beijing). 2024:S2095-9273(23)00939-8.

[108]

ADVANCE Collaborative Group, PatelA, MacMahonS, et al. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med. 2008;358(24):2560-2572.

[109]

PreisslS, Gaulton KJ, RenB. Characterizing cis-regulatory elements using single-cell epigenomics. Nat Rev Genet. 2023;24(1):21-43.

[110]

BennettHM, Stephenson W, RoseCM, DarmanisS. Single-cell proteomics enabled by next-generation sequencing or mass spectrometry. Nat Methods. 2023;20(3):363-374.

[111]

BonevaSK, WolfJ, HajdúRI, et al. In-depth molecular characterization of neovascular membranes suggests a role for hyalocyte-to-myofibroblast transdifferentiation in proliferative diabetic retinopathy. Front Immunol. 2021;12:757607.

[112]

VandereykenK, SifrimA, ThienpontB, Voet T. Methods and applications for single-cell and spatial multi-omics. Nat Rev Genet. 2023;24(8):494-515.

[113]

van den BrinkSC, SageF, VértesyÁ, et al. Single-cell sequencing reveals dissociation-induced gene expression in tissue subpopulations. Nat Methods. 2017;14(10):935-936.

[114]

Van de SandeB, LeeJS, Mutasa-GottgensE, et al. Applications of single-cell RNA sequencing in drug discovery and development. Nat Rev Drug Discov. 2023;22(6):496-520.

RIGHTS & PERMISSIONS

2024 The Author(s). Clinical and Translational Medicine published by John Wiley & Sons Australia, Ltd on behalf of Shanghai Institute of Clinical Bioinformatics.

AI Summary AI Mindmap
PDF

425

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/