Low-intensity pulsed ultrasound improves myocardial ischaemia‒reperfusion injury via migrasome-mediated mitocytosis

Ping Sun , Yifei Li , Weidong Yu , Jianfeng Chen , Pingping Wan , Zhuo Wang , Maomao Zhang , Chao Wang , Shuai Fu , Ge Mang , Stephen Choi , Zhuo Du , Caiying Tang , Song Li , Guoxia Shi , Jiawei Tian , Jiannan Dai , Xiaoping Leng

Clinical and Translational Medicine ›› 2024, Vol. 14 ›› Issue (7) : e1749

PDF
Clinical and Translational Medicine ›› 2024, Vol. 14 ›› Issue (7) : e1749 DOI: 10.1002/ctm2.1749
RESEARCH ARTICLE

Low-intensity pulsed ultrasound improves myocardial ischaemia‒reperfusion injury via migrasome-mediated mitocytosis

Author information +
History +
PDF

Abstract

During myocardial ischaemia‒reperfusion injury (MIRI), the accumulation of damaged mitochondria could pose serious threats to the heart. The migrasomes, newly discovered mitocytosis-mediating organelles, selectively remove damaged mitochondria to provide mitochondrial quality control. Here, we utilised low-intensity pulsed ultrasound (LIPUS) on MIRI mice model and demonstrated that LIPUS reduced the infarcted area and improved cardiac dysfunction. Additionally, we found that LIPUS alleviated MIRI-induced mitochondrial dysfunction. We provided new evidence that LIPUS mechanical stimulation facilitated damaged mitochondrial excretion via migrasome-dependent mitocytosis. Inhibition the formation of migrasomes abolished the protective effect of LIPUS on MIRI. Mechanistically, LIPUS induced the formation of migrasomes by evoking the RhoA/Myosin II/F-actin pathway. Meanwhile, F-actin activated YAP nuclear translocation to transcriptionally activate the mitochondrial motor protein KIF5B and Drp1, which are indispensable for LIPUS-induced mitocytosis. These results revealed that LIPUS activates mitocytosis, a migrasome-dependent mitochondrial quality control mechanism, to protect against MIRI, underlining LIPUS as a safe and potentially non-invasive treatment for MIRI.

Keywords

low-intensity pulsed ultrasound / mitochondria / mitocytosis / myocardial ischaemia‒reperfusion injury

Cite this article

Download citation ▾
Ping Sun, Yifei Li, Weidong Yu, Jianfeng Chen, Pingping Wan, Zhuo Wang, Maomao Zhang, Chao Wang, Shuai Fu, Ge Mang, Stephen Choi, Zhuo Du, Caiying Tang, Song Li, Guoxia Shi, Jiawei Tian, Jiannan Dai, Xiaoping Leng. Low-intensity pulsed ultrasound improves myocardial ischaemia‒reperfusion injury via migrasome-mediated mitocytosis. Clinical and Translational Medicine, 2024, 14(7): e1749 DOI:10.1002/ctm2.1749

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Reed GW, Rossi JE, Cannon CP. Acute myocardial infarction. Lancet. 2017;389(10065):197-210.

[2]

Tsao CW, Aday AW, Almarzooq ZI, et al. Heart disease and stroke statistics—2022 update: a report from the American Heart Association. Circulation. 2022;145(8):e153-e639.

[3]

Ibanez B, James S, Agewall S, et al. 2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation: the Task Force for the management of acute myocardial infarction in patients presenting with ST-segment elevation of the European Society of Cardiology (ESC). Eur Heart J. 2018;39(2):119-177.

[4]

Wang J, Zhou H. Mitochondrial quality control mechanisms as molecular targets in cardiac ischemia‒reperfusion injury. Acta Pharm Sin B. 2020;10(10):1866-1879.

[5]

Heusch G. Myocardial ischaemia‒reperfusion injury and cardioprotection in perspective. Nat Rev Cardiol. 2020;17(12):773-789.

[6]

Nicolas-Avila JA, Lechuga-Vieco AV, Esteban-Martinez L, et al. A network of macrophages supports mitochondrial homeostasis in the heart. Cell. 2020;183(1):94-109.e123.

[7]

Song R, Dasgupta C, Mulder C, Zhang L. MicroRNA-210 controls mitochondrial metabolism and protects heart function in myocardial infarction. Circulation. 2022;145(15):1140-1153.

[8]

Shen J, Zhang JH, Xiao H, et al. Mitochondria are transported along microtubules in membrane nanotubes to rescue distressed cardiomyocytes from apoptosis. Cell Death Dis. 2018;9(2):81.

[9]

Ma L, Li Y, Peng J, et al. Discovery of the migrasome, an organelle mediating release of cytoplasmic contents during cell migration. Cell Res. 2015;25(1):24-38.

[10]

Zhu M, Zou Q, Huang R, et al. Lateral transfer of mRNA and protein by migrasomes modifies the recipient cells. Cell Res. 2021;31(2):237-240.

[11]

Jiang D, Jiang Z, Lu D, et al. Migrasomes provide regional cues for organ morphogenesis during zebrafish gastrulation. Nat Cell Biol. 2019;21(8):966-977.

[12]

Jiao H, Jiang D, Hu X, et al. Mitocytosis, a migrasome-mediated mitochondrial quality-control process. Cell. 2021;184(11):2896-2910.e2813.

[13]

Monma Y, Shindo T, Eguchi K, et al. Low-intensity pulsed ultrasound ameliorates cardiac diastolic dysfunction in mice: a possible novel therapy for heart failure with preserved left ventricular ejection fraction. Cardiovasc Res. 2021;117(5):1325-1338.

[14]

Shindo T, Ito K, Ogata T, et al. Low-intensity pulsed ultrasound enhances angiogenesis and ameliorates left ventricular dysfunction in a mouse model of acute myocardial infarction. Arterioscler Thromb Vasc Biol. 2016;36(6):1220-1229.

[15]

Zhang B, Chen H, Ouyang J, et al. SQSTM1-dependent autophagic degradation of PKM2 inhibits the production of mature IL1B/IL-1beta and contributes to LIPUS-mediated anti-inflammatory effect. Autophagy. 2020;16(7):1262-1278.

[16]

Fan C, Shi X, Zhao K, et al. Cell migration orchestrates migrasome formation by shaping retraction fibers. J Cell Biol. 2022;221(4):e202109168.

[17]

Bera K, Kiepas A, Godet I, et al. Extracellular fluid viscosity enhances cell migration and cancer dissemination. Nature. 2022;611(7935):365-373.

[18]

Oh B, Wu YW, Swaminathan V, Lam V, Ding J, George PM. Modulating the electrical and mechanical microenvironment to guide neuronal stem cell differentiation. Adv Sci (Weinh). 2021;8(7):2002112.

[19]

Pardo-Pastor C, Rubio-Moscardo F, Vogel-Gonzalez M, et al. Piezo2 channel regulates RhoA and actin cytoskeleton to promote cell mechanobiological responses. Proc Natl Acad Sci U S A. 2018;115(8):1925-1930.

[20]

Lachowski D, Matellan C, Gopal S, et al. Substrate stiffness-driven membrane tension modulates vesicular trafficking via caveolin-1. ACS Nano. 2022;16(3):4322-4337.

[21]

Yao H, Zhang L, Yan S, et al. Low-intensity pulsed ultrasound/nanomechanical force generators enhance osteogenesis of BMSCs through microfilaments and TRPM7. J Nanobiotechnol. 2022;20(1):378.

[22]

Hetmanski JHR, de Belly H, Busnelli I, et al. Membrane tension orchestrates rear retraction in matrix-directed cell migration. Dev Cell. 2019;51(4):460-475.e410.

[23]

Wang M, Xiong C, Mercurio AM. PD-LI promotes rear retraction during persistent cell migration by altering integrin beta4 dynamics. J Cell Biol. 2022;221(5):e202108083.

[24]

Xiang SY, Vanhoutte D, Del Re DP, et al. RhoA protects the mouse heart against ischemia/reperfusion injury. J Clin Invest. 2011;121(8):3269-3276.

[25]

Panciera T, Azzolin L, Cordenonsi M, Piccolo S. Mechanobiology of YAP and TAZ in physiology and disease. Nat Rev Mol Cell Biol. 2017;18(12):758-770.

[26]

Guo Y, Lu X, Chen Y, et al. Opposing roles of ZEB1 in the cytoplasm and nucleus control cytoskeletal assembly and YAP1 activity. Cell Rep. 2022;41(1):111452.

[27]

Wang C, Du W, Su QP, et al. Dynamic tubulation of mitochondria drives mitochondrial network formation. Cell Res. 2015;25(10):1108-1120.

[28]

Giovarelli M, Zecchini S, Martini E, et al. Drp1 overexpression induces desmin disassembling and drives kinesin-1 activation promoting mitochondrial trafficking in skeletal muscle. Cell Death Differ. 2020;27(8):2383-2401.

[29]

Bhatt DL, Lopes RD, Harrington RA. Diagnosis and treatment of acute coronary syndromes: a review. JAMA. 2022;327(7):662-675.

[30]

Bland AR, Payne FM, Ashton JC, Jamialahmadi T, Sahebkar A. The cardioprotective actions of statins in targeting mitochondrial dysfunction associated with myocardial ischaemia‒reperfusion injury. Pharmacol Res. 2022;175:105986.

[31]

Schafer A, Konig T, Bauersachs J, Akin M. Novel therapeutic strategies to reduce reperfusion injury after acute myocardial infarction. Curr Probl Cardiol. 2022;47(12):101398.

[32]

Shan D, Guo S, Wu HK, et al. Cardiac ischemic preconditioning promotes MG53 secretion through H(2)O(2)-activated protein kinase C-delta signaling. Circulation. 2020;142(11):1077-1091.

[33]

Tu M, Tan VP, Yu JD, et al. RhoA signaling increases mitophagy and protects cardiomyocytes against ischemia by stabilizing PINK1 protein and recruiting Parkin to mitochondria. Cell Death Differ. 2022;29(12):2472-2486.

[34]

Kloner RA, Brown DA, Csete M, et al. New and revisited approaches to preserving the reperfused myocardium. Nat Rev Cardiol. 2017;14(11):679-693.

[35]

Mewton N, Croisille P, Gahide G, et al. Effect of cyclosporine on left ventricular remodeling after reperfused myocardial infarction. J Am Coll Cardiol. 2010;55(12):1200-1205.

[36]

Cung TT, Morel O, Cayla G, et al. Cyclosporine before PCI in patients with acute myocardial infarction. N Engl J Med. 2015;373(11):1021-1031.

[37]

Yu S, Yu L. Migrasome biogenesis and functions. FEBS J. 2022;289(22):7246-7254.

[38]

Atar D, Arheden H, Berdeaux A, et al. Effect of intravenous TRO40303 as an adjunct to primary percutaneous coronary intervention for acute ST-elevation myocardial infarction: MITOCARE study results. Eur Heart J. 2015;36(2):112-119.

[39]

Ikeda G, Santoso MR, Tada Y, et al. Mitochondria-rich extracellular vesicles from autologous stem cell-derived cardiomyocytes restore energetics of ischemic myocardium. J Am Coll Cardiol. 2021;77(8):1073-1088.

[40]

Vining KH, Mooney DJ. Mechanical forces direct stem cell behaviour in development and regeneration. Nat Rev Mol Cell Biol. 2017;18(12):728-742.

[41]

Sakaguchi T, Takefuji M, Wettschureck N, et al. Protein kinase N promotes stress-induced cardiac dysfunction through phosphorylation of myocardin-related transcription factor A and disruption of its interaction with actin. Circulation. 2019;140(21):1737-1752.

[42]

Hodge RG, Ridley AJ. Regulating Rho GTPases and their regulators. Nat Rev Mol Cell Biol. 2016;17(8):496-510.

[43]

Wu C, Zhang Z, Zhang W, Liu X. Mitochondrial dysfunction and mitochondrial therapies in heart failure. Pharmacol Res. 2022;175:106038.

[44]

Kilian LS, Voran J, Frank D, Rangrez AY. RhoA: a dubious molecule in cardiac pathophysiology. J Biomed Sci. 2021;28(1):33.

[45]

Tu M, Miyamoto S. RHOA, a small G-protein, signals to mitophagy through regulation of PINK1 protein stability and protects cardiomyocytes against ischemia. Autophagy. 2023;19(6):1865-1866.

[46]

Sheu SH, Upadhyayula S, Dupuy V, et al. A serotonergic axon-cilium synapse drives nuclear signaling to alter chromatin accessibility. Cell. 2022;185(18):3390-3407.e3318.

[47]

Moroishi T, Hansen CG, Guan KL. The emerging roles of YAP and TAZ in cancer. Nat Rev Cancer. 2015;15(2):73-79.

[48]

Ambrosini S, Montecucco F, Kolijn D, et al. Methylation of the Hippo effector YAP by the methyltransferase SETD7 drives myocardial ischaemic injury: a translational study. Cardiovasc Res. 2023;118(17):3374-3385.

[49]

Song M, Mihara K, Chen Y, Scorrano L. Mitochondrial fission and fusion factors reciprocally orchestrate mitophagic culling in mouse hearts and cultured fibroblasts. Cell Metab. 2015;21(2):273-286.

[50]

Ikeda Y, Shirakabe A, Maejima Y, et al. Endogenous Drp1 mediates mitochondrial autophagy and protects the heart against energy stress. Circ Res. 2015;116(2):264-278.

RIGHTS & PERMISSIONS

2024 The Author(s). Clinical and Translational Medicine published by John Wiley & Sons Australia, Ltd on behalf of Shanghai Institute of Clinical Bioinformatics.

AI Summary AI Mindmap
PDF

300

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/