KMT2A and chronic inflammation as potential drivers of sporadic parathyroid adenoma

Qin Xu , Ting La , Kaihong Ye , Li Wang , Shasha Wang , Yifeng Hu , Liu Teng , Lei Yan , Jinming Li , Zhenhua Zhang , Zehua Shao , Yuan Yuan Zhang , Xiao Hong Zhao , Yu Chen Feng , Lei Jin , Mark Baker , Rick F. Thorne , Xu Dong Zhang , Feng-Min Shao , Huixia Cao

Clinical and Translational Medicine ›› 2024, Vol. 14 ›› Issue (6) : e1734

PDF
Clinical and Translational Medicine ›› 2024, Vol. 14 ›› Issue (6) : e1734 DOI: 10.1002/ctm2.1734
RESEARCH ARTICLE

KMT2A and chronic inflammation as potential drivers of sporadic parathyroid adenoma

Author information +
History +
PDF

Abstract

Single-cell RNA-sequencing reveals a transcriptome catalogue comparing sporadic parathyroid adenomas (PAs) with normal parathyroid glands.

PA cells show a pervasive increase in gene expression linked to KMT2A upregulation.

KMT2A-mediated STAT3 and GATA3 upregulation is key to promoting PA cell proliferation via cyclin D2.

PAs exhibit a proinflammatory microenvironment, suggesting a potential role of chronic inflammation in PA pathogenesis.

Keywords

CCND2 / cyclin D2 / epigenetics / KMT2A / single-cell analysis / sporadic parathyroid adenoma

Cite this article

Download citation ▾
Qin Xu, Ting La, Kaihong Ye, Li Wang, Shasha Wang, Yifeng Hu, Liu Teng, Lei Yan, Jinming Li, Zhenhua Zhang, Zehua Shao, Yuan Yuan Zhang, Xiao Hong Zhao, Yu Chen Feng, Lei Jin, Mark Baker, Rick F. Thorne, Xu Dong Zhang, Feng-Min Shao, Huixia Cao. KMT2A and chronic inflammation as potential drivers of sporadic parathyroid adenoma. Clinical and Translational Medicine, 2024, 14(6): e1734 DOI:10.1002/ctm2.1734

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

BrownEM. Extracellular Ca2+ sensing, regulation of parathyroid cell function, and role of Ca2+ and other ions as extracellular (first) messengers. Physiol Rev. 1991;71(2):371-411.

[2]

GoltzmanD, Mannstadt M, MarcocciC. Physiology of the calcium-parathyroid hormone‒vitamin D axis. Front Horm Res. 2018;50:1-13.

[3]

TinawiM. Disorders of calcium metabolism: hypocalcemia and hypercalcemia. Cureus. 2021;13(1):e12420.

[4]

MariniF, GiustiF, CioppiF, et al. Bone and mineral metabolism phenotypes in MEN1-related and sporadic primary hyperparathyroidism, before and after parathyroidectomy. Cells. 2021;10(8):1895.

[5]

LarsenLV, Mirebeau-Prunier D, ImaiT, et al. Primary hyperparathyroidism as first manifestation in multiple endocrine neoplasia type 2A: an international multicenter study. Endocr Connect. 2020;9(6):489-497.

[6]

JuhlinCC, Erickson LA. Genomics and epigenomics in parathyroid neoplasia: from bench to surgical pathology practice. Endocr Pathol. 2021;32(1):17-34.

[7]

DsouzaC, Bhagavan KR, GopalakrishnanRakeshK. Ectopic parathyroid adenoma. Thyroid Res Pract. 2012;9(2):68-70.

[8]

DandurandK, AliDS, KhanAA. Primary hyperparathyroidism: a narrative review of diagnosis and medical management. J Clin Med. 2021;10(8):1604.

[9]

MedinaJE, Randolph GW, AngelosP, et al. Primary hyperparathyroidism: disease of diverse genetic, symptomatic, and biochemical phenotypes. Head Neck. 2021;43(12):3996-4009.

[10]

LuM, Kjellin H, FotouhiO, et al. Molecular profiles of oxyphilic and chief cell parathyroid adenoma. Mol Cell Endocrinol. 2018;470:84-95.

[11]

CarlingT, CorreaP, HessmanO, et al. Parathyroid MEN1 gene mutations in relation to clinical characteristics of nonfamilial primary hyperparathyroidism. J Clin Endocrinol Metab. 1998;83(8):2960-2963.

[12]

EricksonLA, JinL, WollanP, Thompson GB, van HeerdenJA, LloydRV. Parathyroid hyperplasia, adenomas, and carcinomas: differential expression of p27Kip1 protein. Am J Surg Pathol. 1999;23(3):288-295.

[13]

CromerMK, Starker LF, ChoiM, et al. Identification of somatic mutations in parathyroid tumors using whole-exome sequencing. J Clin Endocrinol Metab. 2012;97(9):E1774-E1781.

[14]

CrynsVL, RubioMP, ThorAD, Louis DN, ArnoldA. p53 abnormalities in human parathyroid carcinoma. J Clin Endocrinol Metab. 1994;78(6):1320-1324.

[15]

Silva-FigueroaAM, Perrier ND. Epigenetic processes in sporadic parathyroid neoplasms. Mol Cell Endocrinol. 2018;469:54-59.

[16]

Costa-GudaJ, ArnoldA. Genetic and epigenetic changes in sporadic endocrine tumors: parathyroid tumors. Mol Cell Endocrinol. 2014;386(1-2):46-54.

[17]

SalcuniAS, CetaniF, GuarnieriV, et al. Parathyroid carcinoma. Best Pract Res Clin Endocrinol Metab. 2018;32(6):877-889.

[18]

GuarnieriV, Muscarella LA, VerdelliC, CorbettaS. Alterations of DNA methylation in parathyroid tumors. Mol Cell Endocrinol. 2018;469:60-69.

[19]

SvedlundJ, Barazeghi E, StålbergP, et al. The histone methyltransferase EZH2, an oncogene common to benign and malignant parathyroid tumors. Endocr Relat Cancer. 2014;21(2):231-239.

[20]

RomanoR, SoongCP, RoseM, Costa-Guda J, BellizziJ, ArnoldA. EZH2 copy number and mutational analyses in sporadic parathyroid adenomas. Endocrine. 2017;55(3):985-988.

[21]

Conti de FreitasLC, Castilho RM, SquarizeCH. Histone modification on parathyroid tumors: a review of epigenetics. Int J Mol Sci. 2022;23(10):5378.

[22]

ShiY, HogueJ, DixitD, Koh J, OlsonJA. Functional and genetic studies of isolated cells from parathyroid tumors reveal the complex pathogenesis of parathyroid neoplasia. Proc Natl Acad Sci U S A. 2014;111(8):3092-3097.

[23]

LamKY, ChanAC, LoCY. Parathyroid adenomas with pronounced lymphocytic infiltration: no evidence of autoimmune pathogenesis. Endocr Pathol. 2000;11(1):77-83.

[24]

WuSZ, Al-Eryani G, RodenDL, et al. A single-cell and spatially resolved atlas of human breast cancers. Nature Genetics. 2021;53(9):1334-1347.

[25]

LiY, LiX, ChenH, et al. Single-cell RNA sequencing reveals the multi-cellular ecosystem in different radiological components of pulmonary part-solid nodules. Clin Transl Med. 2022;12(2):e723.

[26]

SunY, WuL, ZhongY, et al. Single-cell landscape of the ecosystem in early-relapse hepatocellular carcinoma. Cell. 2021;184(2):404-421.

[27]

LuoH, XiaX, KimGD, et al. Characterizing dedifferentiation of thyroid cancer by integrated analysis. Sci Adv. 2021;7(31):eabf3657.

[28]

ZhangX, HuY, CuiM, et al. Cell diversity and immune infiltration in the parathyroid tumour microenvironment. Endocr Relat Cancer. 2023;30(3):e220325.

[29]

HuY, ZhangX, WangO, et al. Integrated whole-exome and transcriptome sequencing of sporadic parathyroid adenoma. Front Endocrinol (Lausanne). 2021;12:631680.

[30]

LindermanGC, ZhaoJ, RoulisM, et al. Zero-preserving imputation of single-cell RNA-seq data. Nat Commun. 2022;13(1):192.

[31]

JinS, Guerrero-Juarez CF, ZhangL, et al. Inference and analysis of cell-cell communication using CellChat. Nat Commun. 2021;12(1):1088.

[32]

YeY, JinL, WilmottJS, et al. PI(4,5)P2 5-phosphatase A regulates PI3K/Akt signalling and has a tumour suppressive role in human melanoma. Nat Commun. 2013;4:1508.

[33]

LaT, ChenS, ZhaoXH, et al. LncRNA LIMp27 regulates the DNA damage response through p27 in p53-defective cancer cells. Adv Sci (Weinh). 2023;10(7):e2204599.

[34]

WangPL, TengL, FengYC, et al. The N-Myc-responsive lncRNA MILIP promotes DNA double-strand break repair through non-homologous end joining. Proc Natl Acad Sci U S A. 2022;119(49):e2208904119.

[35]

ChaiYJ, ChaeH, KimK, et al. Comparative gene expression profiles in parathyroid adenoma and normal parathyroid tissue. J Clin Med. 2019;8(3):297.

[36]

FanY, LiuW, BiR, et al. Interrelated role of Klotho and calcium-sensing receptor in parathyroid hormone synthesis and parathyroid hyperplasia. Proc Natl Acad Sci U S A. 2018;115(16):E3749-E3758.

[37]

HanSI, Tsunekage Y, KataokaK. Gata3 cooperates with Gcm2 and MafB to activate parathyroid hormone gene expression by interacting with SP1. Mol Cell Endocrinol. 2015;411:113-120.

[38]

GrigorievaIV, Mirczuk S, GaynorKU, et al. Gata3-deficient mice develop parathyroid abnormalities due to dysregulation of the parathyroid-specific transcription factor Gcm2. J Clin Invest. 2010;120(6):2144-2155.

[39]

DingC, Buckingham B, LevineMA. Familial isolated hypoparathyroidism caused by a mutation in the gene for the transcription factor GCMB. J Clin Invest. 2001;108(8):1215-1220.

[40]

HänzelmannS, Castelo R, GuinneyJ. GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinformatics. 2013;14:7.

[41]

DaveyRA, Grossmann M. Androgen receptor structure, function and biology: from bench to bedside. Clin Biochem Rev. 2016;37(1):3-15.

[42]

FuentesN, Silveyra P. Estrogen receptor signaling mechanisms. Adv Protein Chem Struct Biol. 2019;116:135-170.

[43]

BaumeisterSH, Freeman GJ, DranoffG, SharpeAH. Coinhibitory pathways in immunotherapy for cancer. Annu Rev Immunol. 2016;34:539-573.

[44]

AibarS, González-Blas CB, MoermanT, et al. SCENIC: single-cell regulatory network inference and clustering. Nat Methods. 2017;14(11):1083-1086.

[45]

PeiXH, BaiF, SmithMD, et al. CDK inhibitor p18(INK4c) is a downstream target of GATA3 and restrains mammary luminal progenitor cell proliferation and tumorigenesis. Cancer Cell. 2009;15(5):389-401.

[46]

YuH, LeeH, HerrmannA, Buettner R, JoveR. Revisiting STAT3 signalling in cancer: new and unexpected biological functions. Nat Rev Cancer. 2014;14(11):736-746.

[47]

KanehisaM, GotoS. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 2000;28(1):27-30.

[48]

ZhaoL, SunLH, LiuDM, et al. Copy number variation in CCND1 gene is implicated in the pathogenesis of sporadic parathyroid carcinoma. World J Surg. 2014;38(7):1730-1737.

[49]

HemmerS, Wasenius VM, HaglundC, et al. Deletion of 11q23 and cyclin D1 overexpression are frequent aberrations in parathyroid adenomas. Am J Pathol. 2001;158(4):1355-1362.

[50]

SzalatA, ShaharM, ShpitzenS, et al. Calcium-sensing receptor sequencing in 21 patients with idiopathic or familial parathyroid disorder: pitfalls and characterization of a novel I32 V loss-of-function mutation. Endocrine. 2015;48(2):444-453.

[51]

HaradaK, Fujioka A, KonnoM, InoueA, YamadaH, HirotaY. Pharmacology of Parsabiv(®) (etelcalcetide, ONO-5163/AMG 416), a novel allosteric modulator of the calcium-sensing receptor, for secondary hyperparathyroidism in hemodialysis patients. Eur J Pharmacol. 2019;842:139-145.

[52]

TomarN, GuptaN, GoswamiR. Calcium-sensing receptor autoantibodies and idiopathic hypoparathyroidism. J Clin Endocrinol Metab. 2013;98(9):3884-3891.

[53]

ParkSY, LeeCJ, ChoiJH, et al. The JAK2/STAT3/CCND2 axis promotes colorectal cancer stem cell persistence and radioresistance. J Exp Clin Cancer Res. 2019;38(1):399.

[54]

LinX, ChenJ-D, WangC-Y, et al. Cooperation of MLL1 and Jun in controlling H3K4me3 on enhancers in colorectal cancer. Genome Biology. 2023;24(1):268.

[55]

LuoH, XiaX, HuangLB, et al. Pan-cancer single-cell analysis reveals the heterogeneity and plasticity of cancer-associated fibroblasts in the tumor microenvironment. Nat Commun. 2022;13(1):6619.

[56]

ServaisC, ErezN. From sentinel cells to inflammatory culprits: cancer-associated fibroblasts in tumour-related inflammation. J Pathol. 2013;229(2):198-207.

[57]

ÖhlundD, Handly-Santana A, BiffiG, et al. Distinct populations of inflammatory fibroblasts and myofibroblasts in pancreatic cancer. J Exp Med. 2017;214(3):579-596.

[58]

ChenZ, ZhouL, LiuL, et al. Single-cell RNA sequencing highlights the role of inflammatory cancer-associated fibroblasts in bladder urothelial carcinoma. Nat Commun. 2020;11(1):5077.

[59]

Dias Carvalho P, GuimarãesCF, CardosoAP, et al. KRAS oncogenic signaling extends beyond cancer cells to orchestrate the microenvironment. Cancer Res. 2018;78(1):7-14.

[60]

HeldinCH, Lennartsson J, WestermarkB. Involvement of platelet-derived growth factor ligands and receptors in tumorigenesis. J Intern Med. 2018;283(1):16-44.

[61]

TurnerHE, HarrisAL, MelmedS, Wass JA. Angiogenesis in endocrine tumors. Endocr Rev. 2003;24(5):600-632.

[62]

LambrechtsD, Wauters E, BoeckxB, et al. Phenotype molding of stromal cells in the lung tumor microenvironment. Nat Med. 2018;24(8):1277-1289.

[63]

XingX, YangF, HuangQ, et al. Decoding the multicellular ecosystem of lung adenocarcinoma manifested as pulmonary subsolid nodules by single-cell RNA sequencing. Sci Adv. 2021;7(5).

[64]

XueJ, Schmidt SV, SanderJ, et al. Transcriptome-based network analysis reveals a spectrum model of human macrophage activation. Immunity. 2014;40(2):274-288.

[65]

OkabeY, Medzhitov R. Tissue biology perspective on macrophages. Nat Immunol. 2016;17(1):9-17.

[66]

Del RizzoPA, Trievel RC. Substrate and product specificities of SET domain methyltransferases. Epigenetics. 2011;6(9):1059-1067.

[67]

ZhangH, GayenS, XiongJ, et al. MLL1 inhibition reprograms epiblast stem cells to naive pluripotency. Cell Stem Cell. 2016;18(4):481-494.

[68]

WintersAC, BerntKM. MLL-rearranged leukemias—an update on science and clinical approaches. Front Pediatr. 2017;5:4.

[69]

HarperDP, AplanPD. Chromosomal rearrangements leading to MLL gene fusions: clinical and biological aspects. Cancer Res. 2008;68(24):10024-10027.

[70]

MusgroveEA, CaldonCE, BarracloughJ, StoneA, Sutherland RL. Cyclin D as a therapeutic target in cancer. Nat Rev Cancer. 2011;11(8):558-572.

[71]

MirzaaG, ParryDA, FryAE, et al. De novo CCND2 mutations leading to stabilization of cyclin D2 cause megalencephaly-polymicrogyria-polydactyly-hydrocephalus syndrome. Nat Genet. 2014;46(5):510-515.

[72]

ChortiA, ChevaA, ChatzikyriakidouA, et al. Sporadic parathyroid adenoma: an updated review of molecular genetics. Front Endocrinol (Lausanne). 2023;14:1180211.

[73]

AmayaML, InguvaA, PeiS, et al. The STAT3‒MYC axis promotes survival of leukemia stem cells by regulating SLC1A5 and oxidative phosphorylation. Blood. 2022;139(4):584-596.

[74]

BowmanT, BroomeMA, SinibaldiD, et al. Stat3-mediated Myc expression is required for Src transformation and PDGF-induced mitogenesis. Proc Natl Acad Sci U S A. 2001;98(13):7319-7324.

[75]

BalengaN, Azimzadeh P, HogueJA, et al. Orphan adhesion GPCR GPR64/ADGRG2 is overexpressed in parathyroid tumors and attenuates calcium-sensing receptor-mediated signaling. J Bone Miner Res. 2017;32(3):654-666.

[76]

ZhaoH, WuL, YanG, et al. Inflammation and tumor progression: signaling pathways and targeted intervention. Signal Transduct Targeted Ther. 2021;6(1):263.

[77]

GrivennikovSI, GretenFR, KarinM. Immunity, inflammation, and cancer. Cell. 2010;140(6):883-899.

[78]

ChenL, ShanC, XuS, et al. Single-cell transcriptomic atlas of parathyroid adenoma and parathyroid carcinoma. J Bone Miner Res. 2023;38(7):994-1005.

[79]

WalshDA, Pearson CI. Angiogenesis in the pathogenesis of inflammatory joint and lung diseases. Arthritis Res. 2001;3(3):147-153.

[80]

FrantzS, Vincent KA, FeronO, KellyRA. Innate immunity and angiogenesis. Circ Res. 2005;96(1):15-26.

[81]

Díaz-FloresL, Gutiérrez R, González-Gómez M, et al. Telocytes/CD34+ stromal cells in the normal, hyperplastic, and adenomatous human parathyroid glands. Int J Mol Sci. 2023;24(15):12118.

[82]

CaoF, Townsend EC, KaratasH, et al. Targeting MLL1 H3K4 methyltransferase activity in mixed-lineage leukemia. Mol Cell. 2014;53(2):247-261.

[83]

MoutiMA, DengS, PookM, et al. KMT2A associates with PHF5A‒PHF14‒HMG20A‒RAI1 subcomplex in pancreatic cancer stem cells and epigenetically regulates their characteristics. Nat Commun. 2023;14(1):5685.

RIGHTS & PERMISSIONS

2024 The Author(s). Clinical and Translational Medicine published by John Wiley & Sons Australia, Ltd on behalf of Shanghai Institute of Clinical Bioinformatics.

AI Summary AI Mindmap
PDF

175

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/