Machine learning and radiomics for predicting efficacy of programmed cell death protein 1 inhibitor for small cell lung cancer: A multicenter cohort study

Pulin Li , Ling Huang , Rui Han , Min Tang , Guanghe Fei , Daxiong Zeng , Ran Wang

Clinical and Translational Medicine ›› 2024, Vol. 14 ›› Issue (6) : e1673

PDF
Clinical and Translational Medicine ›› 2024, Vol. 14 ›› Issue (6) : e1673 DOI: 10.1002/ctm2.1673
LETTER TO THE JOURNAL

Machine learning and radiomics for predicting efficacy of programmed cell death protein 1 inhibitor for small cell lung cancer: A multicenter cohort study

Author information +
History +
PDF

Cite this article

Download citation ▾
Pulin Li, Ling Huang, Rui Han, Min Tang, Guanghe Fei, Daxiong Zeng, Ran Wang. Machine learning and radiomics for predicting efficacy of programmed cell death protein 1 inhibitor for small cell lung cancer: A multicenter cohort study. Clinical and Translational Medicine, 2024, 14(6): e1673 DOI:10.1002/ctm2.1673

登录浏览全文

4963

注册一个新账户 忘记密码

References

RIGHTS & PERMISSIONS

2024 The Authors. Clinical and Translational Medicine published by John Wiley & Sons Australia, Ltd on behalf of Shanghai Institute of Clinical Bioinformatics

AI Summary AI Mindmap
PDF

95

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/