Novel bispecific nanobody mitigates experimental intestinal inflammation in mice by targeting TNF-α and IL-23p19 bioactivities

Jiewen Wang , Guangbo Kang , Huiying Lu , Ario de Marco , Haibin Yuan , Zelin Feng , Mengxue Gao , Xiaoli Wang , Huahong Wang , Xiaolan Zhang , Yuli Wang , Miao Zhang , Ping Wang , Yuanhang Feng , Zhanju Liu , Xiaocang Cao , He Huang

Clinical and Translational Medicine ›› 2024, Vol. 14 ›› Issue (3) : e1636

PDF
Clinical and Translational Medicine ›› 2024, Vol. 14 ›› Issue (3) : e1636 DOI: 10.1002/ctm2.1636
RESEARCH ARTICLE

Novel bispecific nanobody mitigates experimental intestinal inflammation in mice by targeting TNF-α and IL-23p19 bioactivities

Author information +
History +
PDF

Abstract

A bispecific nanobody (BsNb) was created to target TNF-α and IL-23p19, exhibiting high affinity and remarkable stability.

BsNb-Fc inhibited the release of cytokines in CD4+T cells during co-culture experiments.

BsNb-Fc effectively alleviated colitis severity in mouse model with acute colitis induced by DSS or TNBS, outperforming the IFX&UST; combination.

Keywords

anti-TNF-α mAb / bispecific nanobodies / inflammatory bowel disease / TNFR2 +IL23R + T cells / VHH-Fc

Cite this article

Download citation ▾
Jiewen Wang,Guangbo Kang,Huiying Lu,Ario de Marco,Haibin Yuan,Zelin Feng,Mengxue Gao,Xiaoli Wang,Huahong Wang,Xiaolan Zhang,Yuli Wang,Miao Zhang,Ping Wang,Yuanhang Feng,Zhanju Liu,Xiaocang Cao,He Huang. Novel bispecific nanobody mitigates experimental intestinal inflammation in mice by targeting TNF-α and IL-23p19 bioactivities. Clinical and Translational Medicine, 2024, 14(3): e1636 DOI:10.1002/ctm2.1636

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

RaineT, DaneseS. Breaking through the therapeutic ceiling: what will it take? Gastroenterology. 2022;162(5):1507-1511.

[2]

DignassAU. The second European evidence-based consensus on the diagnosis and management of Crohn's disease: current management (vol 4, pg 28, 2010). J Crohns Colitis. 2010;4(3):353-353.

[3]

UngarB, LevyI, YavneY, et al. Optimizing anti-TNF-alpha therapy: serum levels of infliximab and adalimumab are associated with mucosal healing in patients with inflammatory bowel diseases. Clin Gastroenterol Hepatol. 2016;14(4):550-557.

[4]

StrikAS, BotsSJA, D'HaensG, Lowenberg M. Optimization of anti-TNF therapy in patients with inflammatory bowel disease. Expert Rev Clin Pharmacol. 2016;9(3):429-439.

[5]

PapamichaelK, Cheifetz AS, MelmedGY, et al. Appropriate therapeutic drug monitoring of biologic agents for patients with inflammatory bowel diseases. Clin Gastroenterol Hepatol. 2019;17(9):1655-1668.

[6]

HanauerSB, FeaganBG, LichtensteinGR, et al. Maintenance infliximab for Crohn's disease: the ACCENT I randomised trial. Lancet. 2002;359(9317):1541-1549.

[7]

BuhlS, Dorn-Rasmussen M, BrynskovJ, et al. Therapeutic thresholds and mechanisms for primary non-response to infliximab in inflammatory bowel disease. Scand J Gastroenterol. 2020;55(8):884-890.

[8]

BuhlS, Steenholdt C, BorghedeMK, et al. Long-term outcomes after primary infliximab treatment failure in patients with inflammatory bowel disease. Gastroenterology. 2016;150(4):S809-S809.

[9]

KnyazevOV, Zvyaglova MY, KagramanovaAV, et al. Loss of response and frequency of adverse events in patients with ulcerative colitis and Crohn's disease when switching from the original infliximab to its biosimilars. Terapevticheskii Arkhiv. 2021;93(2):150-157.

[10]

LiuHS, LiangZX, WangFW, et al. Intestinal CD14(+) macrophages protect CD4(+)T cells from activation-induced cell death via exosomal membrane TNF in Crohn's disease. J Crohns Colitis. 2020;14(11):1619-1631.

[11]

AlricH, AmiotA, KirchgesnerJ, et al. Effectiveness of ustekinumab and vedolizumab in patients with Crohn's disease refractory to anti-tumour necrosis factor: a multi-centre comparative study. J Crohns Colitis. 2020;14(S1):S118-S120.

[12]

DhaliwalJ, McKayHE, DeslandresC, et al. One-year outcomes with ustekinumab therapy in infliximab-refractory paediatric ulcerative colitis: a multicentre prospective study. Aliment Pharmacol Therap. 2021;53(12):1300-1308.

[13]

WeaverKN, Gregory M, SyalG, et al. Ustekinumab is effective for the treatment of Crohn's disease of the pouch in a multicenter cohort. Inflamm Bowel Dis. 2019;25(4):767-774.

[14]

HongSJ, Cleveland NK, AkiyamaS, et al. Real-world effectiveness and safety of ustekinumab for ulcerative colitis from 2 tertiary IBD centers in the United States. Crohns Colitis 360. 2021;3(1):otab002.

[15]

FeaganBG, Sandborn WJ, D'HaensG, et al. Induction therapy with the selective interleukin-23 inhibitor risankizumab in patients with moderate-to-severe Crohn's disease: a randomised, double-blind, placebo-controlled phase 2 study. Lancet. 2017;389(10080):1699-1709.

[16]

AtreyaR, Neurath MF. IL-23 blockade in anti-TNF refractory IBD: from mechanisms to clinical reality. J Crohns Colitis. 2022;16(S 2):54-63.

[17]

FengZ, KangG, WangJ, et al. Breaking through the therapeutic ceiling of inflammatory bowel disease: dual-targeted therapies. Biomed Pharmacother. 2023;158:158114174.

[18]

YzetC, DupasJ-L, FumeryM. Ustekinumab and anti-TNF combination therapy in patients with inflammatory bowel. Am J Gastroenterol. 2016;111(5):748-749.

[19]

KwapiszL, Raffals LE, BruiningDH, et al. Combination biologic therapy in inflammatory bowel disease: experience from a tertiary care center. Clin Gastroenterol Hepatol. 2021;19(3):616-617.

[20]

PanaccioneN, NovakK, SeowC, et al. The use of combination biologic therapy in inflammatory bowel disease: a single tertiary-centre experience. J Crohns Colitis. 2019;13:S480-S480.

[21]

Peyrin-BirouletL, Demarest S, NirulaA. Bispecific antibodies: the next generation of targeted inflammatory bowel disease therapies. Autoimmun Rev. 2019;18(2):123-128.

[22]

LabrijnAF, Janmaat ML, ReichertJM, ParrenP. Bispecific antibodies: a mechanistic review of the pipeline. Nat Rev Drug Discov. 2019;18(8):585-608.

[23]

SebastianM, Kuemmel A, SchmidtM, SchmittelA. Catumaxomab: a bispecific trifunctional antibody. Drugs Today. 2009;45(8):589-597.

[24]

GokbugetN, Dombret H, BonifacioM, et al. Blinatumomab for minimal residual disease in adults with B-cell precursor acute lymphoblastic leukemia. Blood. 2018;131(14):1522-1531.

[25]

SuursFV, Lub-de Hooge MN, de VriesEGE, de GrootDJA. A review of bispecific antibodies and antibody constructs in oncology and clinical challenges. Pharmacol Therap. 2019;201:103-119.

[26]

YangHL, KarlMN, WangWT, et al. Engineered bispecific antibodies targeting the interleukin-6 and -8 receptors potently inhibit cancer cell migration and tumor metastasis. Mol Ther. 2022;30(11):3430-3449.

[27]

VyseS, HuangPH. Amivantamab for the treatment of EGFRexon 20 insertion mutant non-small cell lung cancer. Expert Rev Anticancer Ther. 2022;22(1):3-16.

[28]

FeltenR, MertzP, SebbagE, Scherlinger M, ArnaudL. Novel therapeutic strategies for autoimmune and inflammatory rheumatic diseases. Drug Discov Today. 2023;28(7):103612.

[29]

SedykhSE, PrinzVV, BunevaVN, Nevinsky GA. Bispecific antibodies: design, therapy, perspectives. Drug Des Devel Ther. 2018;12:195-208.

[30]

LiXY, WangMN, ZhangXH, et al. The novel llama-human chimeric antibody has potent effect in lowering LDL-c levels in hPCSK9 transgenic rats. Clin Transl Med. 2020;9(1):16.

[31]

WrappD, De Vlieger D, CorbettKS, et al. Structural basis for potent neutralization of betacoronaviruses by single-domain camelid antibodies. Cell. 2020;181(5):1004-1015.

[32]

OrlandoM, Fortuna S, OloketuyiS, BajcG, Goldenzweig A, de MarcoA. CDR1 composition can affect nanobody recombinant expression yields. Biomolecules. 2021;11(9):1362.

[33]

WangJW, KangGB, YuanHB, Cao XC, HuangH, de MarcoA. Research progress and applications of multivalent, multispecific and modified nanobodies for disease treatment. Front Immunol. 2022;12:838082.

[34]

SaurabhS, PiazzaF. Mesoscale computational protocols for the design of highly cooperative bivalent macromolecules. Sci Rep. 2020;10(1):7992.

[35]

McRaeBL, LevinAD, WildenbergME, et al. Fc receptor-mediated effector function contributes to the therapeutic response of anti-TNF monoclonal antibodies in a mouse model of inflammatory bowel disease. J Crohns Colitis. 2016;10(1):69-76.

[36]

BeirnaertE, Desmyter A, SpinelliS, et al. Bivalent llama single-domain antibody fragments against tumor necrosis factor have picomolar potencies due to intramolecular interactions. Front Immunol. 2017;8:867.

[37]

DesmyterA, Spinelli S, BouttonC, et al. Neutralization of human interleukin 23 by multivalent nanobodies explained by the structure of cytokine-nanobody complex. Front Immunol. 2017;8:884.

[38]

ConrathKE, Lauwereys M, WynsLL, MuyldermansS. Camel single-domain antibodies as modular building units in bispecific and bivalent antibody constructs. J Biol Chem. 2001;276(10):7346-7350.

[39]

ShenC, de Hertogh G, BullensDMA, et al. Remission-inducing effect of anti-TNF monoclonal antibody in TNBS colitis: mechanisms beyond neutralization? Inflamm Bowel Dis. 2007;13(3):308-316.

[40]

TriantafillidisJ, Vagianos C, AgrogiannisG, et al. Effect of infliximab and adalimumab on experimental colitis following orally supplemented iron. J Invest Surg. 2017;30(1):6-12.

[41]

WangHL, ChaoK, NgSC, et al. Pro-inflammatory miR-223 mediates the cross-talk between the IL23 pathway and the intestinal barrier in inflammatory bowel disease. Genome Biol. 2016;17(1):1-15.

[42]

DjenderS, Schneider A, BeugnetA, et al. Bacterial cytoplasm as an effective cell compartment for producing functional VHH-based affinity reagents and Camelidae IgG-like recombinant antibodies. Microb Cell Fact. 2014;13:140.

[43]

StaerzUD, Kanagawa O, BevanMJ. Hybrid antibodies can target sites for attack by T cells. Nature. 1985;314(6012):628-631.

[44]

ZhangQ, WuL, LiuS, ChenQ, ZengL, Chen X. Targeted nanobody complex enhanced photodynamic therapy for lung cancer by overcoming tumor microenvironment. Cancer Cell Int. 2020;20(1):570.

[45]

NikooharfA, Arezumand R, MansouriK, KhoshiAH, Ahmadabad HN. Development of a recombinant monospecific anti-PLGF bivalent nanobody and evaluation of it in angiogenesis modulation. Mol Biotechnol. 2020;62(11-12):580-588.

[46]

SchoofM, FaustB, SaundersRA, et al. An ultrapotent synthetic nanobody neutralizes SARS-CoV-2 by stabilizing inactive Spike. Science. 2020;370(6523):1473-1479.

[47]

GuettlerT, AksuM, DickmannsA, et al. Neutralization of SARS-CoV-2 by highly potent, hyperthermostable, and mutation-tolerant nanobodies. EMBO J. 2021;40(19):e107985.

[48]

VerkhivkerG. Structural and computational studies of the SARS-CoV-2 spike protein binding mechanisms with nanobodies: from structure and dynamics to avidity-driven nanobody engineering. Int J Mol Sci. 2022;23(6):2928.

[49]

SaerensD, Frederix F, ReekmansG, et al. Engineering camel single-domain antibodies and immobilization chemistry for human. Anal Chem. 2005;77(23):7547-7555.

[50]

MuyldermansS. A guide to: generation and design of nanobodies. FEBS J. 2021;288(7):2084-2102.

[51]

HuM, KangG, ChengX, et al. In vitro affinity maturation to improve the efficacy of a hypoxia-inducible factor 1α single-domain intrabody. Biochem Biophys Res Commun. 2020;529(4):936-942.

[52]

ChengX, WangJ, KangG, et al. Homology modeling-based in silico affinity maturation improves the affinity of a nanobody. Int J Mol Sci. 2019;20(17):4187.

[53]

SolerMA, Medagli B, WangJ, et al. Effect of humanizing mutations on the stability of the llama single-domain variable region. Biomolecules. 2021;11(2):163.

[54]

LevinAD, Wildenberg ME, BrinkGR. Mechanism of action of anti-TNF therapy in inflammatory bowel disease. J Crohns Colitis. 2016;10(8):989-997.

[55]

ArnoultC, Brachet G, Cadena CastanedaD, et al. Crucial role for immune complexes but not FcRn in immunization against anti-TNF-α antibodies after a single injection in mice. J Immunol. 2017;199(2):418-424.

[56]

QiuW, WuB, WangX, et al. PUMA-mediated intestinal epithelial apoptosis contributes to ulcerative colitis in humans and mice. J Clin Invest. 2011;121(5):1722-1732.

[57]

NinnemannJ, Winsauer C, BondarevaM, et al. TNF hampers intestinal tissue repair in colitis by restricting IL-22 bioavailability. Mucosal Immunol. 2022;15(4):698-716.

[58]

KopylovU, Seidman E. Predicting durable response or resistance to antitumor necrosis factor therapy in inflammatory bowel disease. Therap Adv Gastroenterol. 2016;9(4):513-526.

[59]

ParamsothyS, Rosenstein AK, MehandruS, ColombelJF. The current state of the art for biological therapies and new small molecules in inflammatory bowel disease. Mucosal Immunol. 2018;11(6):1558-1570.

[60]

BloemendaalFM, Koelink PJ, van SchieKA, et al. TNF-anti-TNF immune complexes inhibit IL-12/IL-23 secretion by inflammatory macrophages via an Fc-dependent mechanism. J Crohns Colitis. 2018;12(9):1122-1130.

[61]

YangE, Panaccione N, WhitmireN, et al. Efficacy and safety of simultaneous treatment with two biologic medications in refractory Crohn's disease. Aliment Pharmacol Therap. 2020;51(11):1031-1038.

[62]

PriviteraG, OnaliS, PuglieseD, et al. Dual targeted therapy: a possible option for the management of refractory inflammatory bowel disease. J Crohns Colitis. 2021;15(2):335-339.

[63]

YzetC, DupasJL, FumeryM. Ustekinumab and anti-TNF combination therapy in patients with inflammatory bowel disease. Am J Gastroenterol. 2016;111(5):748-749.

[64]

WeinblattM, SchiffM, GoldmanA, et al. Selective costimulation modulation using abatacept in patients with active rheumatoid arthritis while receiving etanercept: a randomised clinical trial. Ann Rheum Dis. 2007;66(2):228-234.

[65]

StenderupK, RosadaC, ShanebeckK, et al. AZ17: a new bispecific drug targeting IL-6 and IL-23 with potential clinical. Protein Eng Des Sel. 2015;28(10):467-480.

[66]

SchmittH, Billmeier U, DieterichW, et al. Expansion of IL-23 receptor bearing TNFR2+T cells is associated with molecular resistance to anti-TNF therapy in Crohn's disease. Gut. 2019;68(5):814-828.

[67]

LopetusoLR, PetitoV, ZinicolaT, et al. Infliximab does not increase colonic cancer risk associated to murine chronic colitis. World J Gastroenterol. 2016;22(44):9727-9733.

[68]

GrattendickKJ, Nakashima JM, FengL, GiriSN, Margolin SB. Effects of three anti-TNF-alpha drugs: etanercept, infliximab and pirfenidone on release of TNF-alpha in medium and TNF-a associated with the cell in vitro. Int Immunopharmacol. 2008;8(5):679-687.

RIGHTS & PERMISSIONS

2024 The Authors. Clinical and Translational Medicine published by John Wiley & Sons Australia, Ltd on behalf of Shanghai Institute of Clinical Bioinformatics.

PDF

137

Accesses

0

Citation

Detail

Sections
Recommended
[69]

QasemiM, Behdani M, ShokrgozarMA, Molla-KazemihaV, Mohseni-Kuchesfahani H, Habibi-AnbouhiM. Construction and expression of an anti-VEGFR2 nanobody-Fc fusionbody in NS0 host cell. Protein Expr Purif. 2016;123:19-25.

AI思维导图

/