Interleukin-2/anti-interleukin-2 immune complex attenuates cold ischemia-reperfusion injury after kidney transplantation by increasing renal regulatory T cells

Joon Young Jang , Hyung Woo Kim , Ji-Jing Yan , Tae Kyeom Kang , Wook-Bin Lee , Beom Seok Kim , Jaeseok Yang

Clinical and Translational Medicine ›› 2024, Vol. 14 ›› Issue (3) : e1631

PDF
Clinical and Translational Medicine ›› 2024, Vol. 14 ›› Issue (3) : e1631 DOI: 10.1002/ctm2.1631
RESEARCH ARTICLE

Interleukin-2/anti-interleukin-2 immune complex attenuates cold ischemia-reperfusion injury after kidney transplantation by increasing renal regulatory T cells

Author information +
History +
PDF

Abstract

• Interleukin (IL)-2/anti-IL-2 antibody complex attenuated acute renal injury, facilitated subacute renal regeneration and suppressed chronic renal fibrosis after cold ischemia-reperfusion injury (IRI) by increasing the renal Tregs.

• IL-2/anti-IL-2 antibody complex decreased reactive oxygen species-mediated injury and improved antioxidant function.

• This study suggests the therapeutic potential of the IL-2/anti-IL-2 antibody complex in kidney transplantation-associated cold IR.

Keywords

cold ischemia-reperfusion injury / IL-2/anti-IL-2 immune complex / kidney transplantation / regulatory T cells

Cite this article

Download citation ▾
Joon Young Jang, Hyung Woo Kim, Ji-Jing Yan, Tae Kyeom Kang, Wook-Bin Lee, Beom Seok Kim, Jaeseok Yang. Interleukin-2/anti-interleukin-2 immune complex attenuates cold ischemia-reperfusion injury after kidney transplantation by increasing renal regulatory T cells. Clinical and Translational Medicine, 2024, 14(3): e1631 DOI:10.1002/ctm2.1631

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

FernandezAR, Sanchez-Tarjuelo R, CravediP, OchandoJ, Lopez-Hoyos M. Review: ischemia reperfusion injury–a translational perspective in organ transplantation. Int J Mol Sci. 2020;21(22):8549.

[2]

SoaresROS, LosadaDM, JordaniMC, Evora P, CastroESO. Ischemia/reperfusion injury revisited: an overview of the latest pharmacological strategies. Int J Mol Sci. 2019;20(20):5034.

[3]

ZhaoH, AlamA, SooAP, George AJT, MaD. Ischemia-reperfusion injury reduces long term renal graft survival: mechanism and beyond. EBioMedicine. 2018;28:31-42.

[4]

SalahudeenAK. Cold ischemic injury of transplanted kidneys: new insights from experimental studies. Am J Physiol Renal Physiol. 2004;287(2):F181-187.

[5]

HosohataK. Role of oxidative stress in drug-induced kidney injury. Int J Mol Sci. 2016;17:1826.

[6]

RatliffBB, Abdulmahdi W, PawarR, WolinMS. Oxidant mechanisms in renal injury and disease. Antioxid Redox Signal. 2016;25:119-146.

[7]

JangHR, RabbH. Immune cells in experimental acute kidney injury. Nat Rev Nephrol. 2015;11(2):88-101.

[8]

van der VlietJA, WarleMC. The need to reduce cold ischemia time in kidney transplantation. Curr Opin Organ Transplant. 2013;18(2):174-178.

[9]

RossardL, Favreau F, GiraudS, et al. Role of warm ischemia on innate and adaptive responses in a preclinical renal auto-transplanted porcine model. J Transl Med. 2013;11:129.

[10]

KinseyGR, SharmaR, HuangL, et al. Regulatory T cells suppress innate immunity in kidney ischemia-reperfusion injury. J Am Soc Nephrol. 2009;20(8):1744-1753.

[11]

GandolfoMT, JangHR, BagnascoSM, et al. Foxp3+ regulatory T cells participate in repair of ischemic acute kidney injury. Kidney Int. 2009;76(7):717-729.

[12]

KimMG, KooTY, YanJJ, et al. IL-2/anti-IL-2 complex attenuates renal ischemia-reperfusion injury through expansion of regulatory T cells. J Am Soc Nephrol. 2013;24(10):1529-1536.

[13]

FangT, KooTY, LeeJG, et al. Anti-CD45RB antibody therapy attenuates renal ischemia-reperfusion injury by inducing regulatory B cells. J Am Soc Nephrol. 2019;30(10):1870-1885.

[14]

YangSH, LeeJP, JangHR, et al. Sulfatide-reactive natural killer T cells abrogate ischemia-reperfusion injury. J Am Soc Nephrol. 2011;22(7):1305-1314.

[15]

HuenSC, HuynhL, MarlierA, Lee Y, MoeckelGW, CantleyLG. GM-CSF promotes macrophage alternative activation after renal ischemia/reperfusion injury. J Am Soc Nephrol. 2015;26(6):1334-1345.

[16]

ZhangMZ, YaoB, YangS, et al. CSF-1 signaling mediates recovery from acute kidney injury. J Clin Invest. 2012;122(12):4519-4532.

[17]

YanJ-J, RyuJ-H, PiaoH, et al. Granulocyte colony-stimulating factor attenuates renal ischemia-reperfusion injury by inducing myeloid-derived suppressor cells. J Am Soc Nephrol. 2020;31(4):731-746.

[18]

CaoQ, WangY, NiuZ, et al. Potentiating tissue-resident type 2 innate lymphoid cells by IL-33 to prevent renal ischemia-reperfusion injury. J Am Soc Nephrol. 2018;29(3):961-976.

[19]

CaoQ, WangR, WangY, et al. Regulatory innate lymphoid cells suppress innate immunity and reduce renal ischemia/reperfusion injury. Kidney Int. 2020;97(1):130-142.

[20]

BoymanO, KovarM, RubinsteinMP, SurhCD, SprentJ. Selective stimulation of T cell subsets with antibody-cytokine immune complexes. Science. 2006;311(5769):1924-1927.

[21]

LetourneauS, van Leeuwen EM, KriegC, et al. IL-2/anti-IL-2 antibody complexes show strong biological activity by avoiding interaction with IL-2 receptor alpha subunit CD25. Proc Natl Acad Sci U S A. 2010;107(5):2171-2176.

[22]

WebsterKE, Walters S, KohlerRE, et al. In vivo expansion of T reg cells with IL-2-mAb complexes: induction of resistance to EAE and long-term acceptance of islet allografts without immunosuppression. J Exp Med. 2009;206:751-760.

[23]

KieranNE, RabbH. Immune responses in kidney preservation and reperfusion injury. J Investig Med. 2004;52(5):310-314.

[24]

WangJ-J, Hockenheimer S, BickerstaffAA, HadleyGA. Murine renal transplantation procedure. JoVE. 2009(29):e1150.

[25]

RongS, LewisAG, KunterU, Haller H, GuelerF. A knotless technique for kidney transplantation in the mouse. J Transplant. 2012;2012:127215.

[26]

LerretNM, LiT, WangJJ, et al. Recipient Myd88 deficiency promotes spontaneous resolution of kidney allograft rejection. J Am Soc Nephrol. 2015;26(11):2753-2764.

[27]

AufhauserDD, WangZ, MurkenDR, et al. Improved renal ischemia tolerance in females influences kidney transplantation outcomes. J Clin Invest. 2016;126(5):1968-1977.

[28]

YanJ-J, LeeJ-G, JangJY, Koo TY, AhnC, YangJ. IL-2/anti-IL-2 complexes ameliorate lupus nephritis by expansion of CD4+CD25+Foxp3+ regulatory T cells. Kidney Int. 2017;91(3):603-615.

[29]

JoSK, SungSA, ChoWY, Go KJ, KimHK. Macrophages contribute to the initiation of ischaemic acute renal failure in rats. Nephrol Dial Transplant. 2006;21(5):1231-1239.

[30]

PolichnowskiAJ, LanR, GengH, et al. Severe renal mass reduction impairs recovery and promotes fibrosis after AKI. J Am Soc Nephrol. 2014;25:1496-1507.

[31]

LovisaS, LeBleuVS, TampeB, et al. Epithelial-to-mesenchymal transition induces cell cycle arrest and parenchymal damage in renal fibrosis. Nat Med. 2015;21:998-1009.

[32]

ChadeAR. VEGF: potential therapy for renal regeneration. F1000 Med Rep. 2012;4:1.

[33]

AielloS, Podesta MA, Rodriguez-OrdonezPY, et al. Transplantation-induced ischemia-reperfusion injury modulates antigen presentation by donor renal CD11c(+)F4/80(+) macrophages through IL-1R8 regulation. J Am Soc Nephrol. 2020;31(3):517-531.

[34]

ZhuJ, ZhangG, SongZ, et al. Protein kinase C-delta mediates kidney tubular injury in cold storage-associated kidney transplantation. J Am Soc Nephrol. 2020;31(5):1050-1065.

[35]

WeiJ, WangY, ZhangJ, et al. A mouse model of renal ischemia-reperfusion injury solely induced by cold ischemia. Am J Physiol Renal Physiol. 2019;317(3):F616-F622.

[36]

Cavaille-CollM, BalaS, VelidedeogluE, et al. Summary of FDA workshop on ischemia reperfusion injury in kidney transplantation. Am J Transplant. 2013;13(5):1134-1148.

[37]

KaylerLK, Srinivas TR, ScholdJD. Influence of CIT-induced DGF on kidney transplant outcomes. Am J Transplant. 2011;11(12):2657-2664.

[38]

ChenY, ShiJ, XiaTC, Xu R, HeX, XiaY, Preservation solutions for kidney transplantation: history, advances and mechanisms. Cell Transplant. 2019;28(12):1472-1489.

[39]

O'CallaghanJM, KnightSR, MorganRD, Morris PJ, Preservation solutions for static cold storage of kidney allografts: a systematic review and meta-analysis. Am J Transplant. 2012;12(4):896-906.

[40]

XuJ, Buchwald JE, MartinsPN. Review of current machine perfusion therapeutics for organ preservation. Transplantation. 2020;104(9):1792-1803.

[41]

BonD, Chatauret N, GiraudS, ThuillierR, Favreau F, HauetT. New strategies to optimize kidney recovery and preservation in transplantation. Nat Rev Nephrol. 2012;8(6):339-347.

[42]

BoymanO, KoliosAG, RaeberME. Modulation of T cell responses by IL-2 and IL-2 complexes. Clin Exp Rheumatol. 2015;33:S54-57.

[43]

KhoryatiL, PhamMN, SherveM, et al. An IL-2 mutein engineered to promote expansion of regulatory T cells arrests ongoing autoimmunity in mice. Sci Immunol. 2020;5:eaba5264.

[44]

ChawlaLS, EggersPW, StarRA, Kimmel PL. Acute kidney injury and chronic kidney disease as interconnected syndromes. N Engl J Med. 2014;371(1):58-66.

[45]

YuSM, Bonventre JV. Acute kidney injury and maladaptive tubular repair leading to renal fibrosis. Curr Opin Nephrol Hypertens. 2020;29(3):310-318.

[46]

StrausserSA, NakanoD, SoumaT. Acute kidney injury to chronic kidney disease transition: insufficient cellular stress response. Curr Opin Nephrol Hypertens. 2018;27(4):314-322.

[47]

ClementsM, Gershenovich M, ChaberC, et al. Differential Ly6C expression after renal ischemia-reperfusion identifies unique macrophage populations. J Am Soc Nephrol. 2016;27(1):159-170.

[48]

YangQ, WangY, PeiG, et al. Bone marrow-derived Ly6C(-) macrophages promote ischemia-induced chronic kidney disease. Cell Death Dis. 2019;10(4):291.

[49]

WangYY, JiangH, PanJ, et al. Macrophage-to-myofibroblast transition contributes to interstitial fibrosis in chronic renal allograft injury. J Am Soc Nephrol. 2017;28(7):2053-2067.

[50]

WangX, ChenJ, XuJ, XieJ, HarrisDCH, Zheng G. The role of macrophages in kidney fibrosis. Front Physiol. 2021;12:705838.

[51]

ZaidiMR, Merlino G. The two faces of interferon-gamma in cancer. Clin Cancer Res. 2011;17(19):6118-6124.

[52]

SawitzkiB, Kingsley CI, OliveiraV, KarimM, HerberM, WoodKJ. IFN-gamma production by alloantigen-reactive regulatory T cells is important for their regulatory function in vivo. J Exp Med. 2005;201(12):1925-1935.

[53]

WangZ, ShiBY, QianYY, Cai M, WangQ. Short-term anti-CD25 monoclonal antibody administration down-regulated CD25 expression without eliminating the neogenetic functional regulatory T cells in kidney transplantation. Clin Exp Immunol. 2009;155:496-503.

[54]

BaanCC, GelderTV, BalkAH, et al. Functional responses of T cells blocked by anti-CD25 antibody therapy during cardiac rejection. Transplantation. 2000;69:331-336.

[55]

PolhillT, ZhangGY, HuM, et al. IL-2/IL-2Ab complexes induce regulatory T cell expansion and protect against proteinuric CKD. J Am Soc Nephrol. 2012;23:1303-1308.

[56]

TrottaE, Bessette PH, SilveriaSL, et al. A human anti-IL-2 antibody that potentiates regulatory T cells by a structure-based mechanism. Nat Med. 2018;24(7):1005-1014.

RIGHTS & PERMISSIONS

2024 The Authors. Clinical and Translational Medicine published by John Wiley & Sons Australia, Ltd on behalf of Shanghai Institute of Clinical Bioinformatics.

AI Summary AI Mindmap
PDF

182

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/