JCAD deficiency delayed liver regenerative repair through the Hippo–YAP signalling pathway

Li Zhang , Yong-Yu Yang , Li Xie , Yuan Zhou , Zhenxing Zhong , Jia Ding , Zhong-Hua Wang , Yu-Li Wang , Xiu-Ping Liu , Fa-Xing Yu , Jian Wu

Clinical and Translational Medicine ›› 2024, Vol. 14 ›› Issue (3) : e1630

PDF
Clinical and Translational Medicine ›› 2024, Vol. 14 ›› Issue (3) : e1630 DOI: 10.1002/ctm2.1630
RESEARCH ARTICLE

JCAD deficiency delayed liver regenerative repair through the Hippo–YAP signalling pathway

Author information +
History +
PDF

Abstract

• JCAD deficiency leads to an impaired liver growth after PH due to cell division blockage.

• JCAD competes with LATS2 for WWC1 interaction, resulting in LATS2 inhibition, YAP activation and enhanced expression of cell cycle-associated genes.

• Delineation of JCADHippoYAP signalling pathway would facilitate to improve prognosis of acute liver failure and graft growth in living-donor liver transplantation.

Keywords

cell cycle phase visualisation / Hippo–YAP signalling pathway / JCAD / liver regeneration / WWC1

Cite this article

Download citation ▾
Li Zhang, Yong-Yu Yang, Li Xie, Yuan Zhou, Zhenxing Zhong, Jia Ding, Zhong-Hua Wang, Yu-Li Wang, Xiu-Ping Liu, Fa-Xing Yu, Jian Wu. JCAD deficiency delayed liver regenerative repair through the Hippo–YAP signalling pathway. Clinical and Translational Medicine, 2024, 14(3): e1630 DOI:10.1002/ctm2.1630

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

ChenX, MuradM, CuiYY, et al. miRNA regulation of liver growth after 50% partial hepatectomy and small size grafts in rats. Transplantation. 2011;91(3):293-299.

[2]

RelaM, ReddyMS. Living donor liver transplant (LDLT) is the way forward in Asia. Hepatol Int. 2017;11(2):148-151.

[3]

GhobrialRM, FreiseCE, TrotterJF, et al. Donor morbidity after living donation for liver transplantation. Gastroenterology. 2008;135(2):468-476.

[4]

AdamR, KaramV, DelvartV, et al. Evolution of indications and results of liver transplantation in Europe. A report from the European Liver Transplant Registry (ELTR). J Hepatol. 2012;57(3):675-688.

[5]

AbecassisMM, FisherRA, OlthoffKM, et al. Complications of living donor hepatic lobectomy—a comprehensive report. Am J Transplant. 2012;12(5):1208-1217.

[6]

AkashiM, Higashi T, MasudaS, KomoriT, FuruseM. A coronary artery disease-associated gene product, JCAD/KIAA1462, is a novel component of endothelial cell–cell junctions. Biochem Biophys Res Commun. 2011;413(2):224-229.

[7]

LiberaleL, Puspitasari YM, MinistriniS, et al. JCAD promotes arterial thrombosis through PI3K/Akt modulation: a translational study. Eur Heart J. 2023;44(20):1818-1833.

[8]

YeJ, LiTS, XuG, et al. JCAD promotes progression of nonalcoholic steatohepatitis to liver cancer by inhibiting LATS2 kinase activity. Cancer Res. 2017;77(19):5287-5300.

[9]

HaraT, Monguchi T, IwamotoN, et al. Targeted disruption of JCAD (junctional protein associated with coronary artery disease)/KIAA1462, a coronary artery disease-associated gene product, inhibits angiogenic processes in vitro and in vivo. Arterioscler Thromb Vasc Biol. 2017;37(9):1667-1673.

[10]

QiS, ZhuY, LiuX, et al. WWC proteins mediate LATS1/2 activation by Hippo kinases and imply a tumor suppression strategy. Mol Cell. 2022;82(10):1850-1864.e7.

[11]

LiuCY, ZhaZY, ZhouX, et al. The hippo tumor pathway promotes TAZ degradation by phosphorylating a phosphodegron and recruiting the SCFbeta-TrCP E3 ligase. J Biol Chem. 2010;285(48):37159-37169.

[12]

ZhaoB, LiL, TumanengK, Wang CY, GuanKL. A coordinated phosphorylation by Lats and CK1 regulates YAP stability through SCF (beta-TRCP). Genes Dev. 2010;24(1):72-85.

[13]

HansenCG, NgYL, LamWL, Plouffe SW, GuanKL. The Hippo pathway effectors YAP and TAZ promote cell growth by modulating amino acid signaling to mTORC1. Cell Res. 2015;25(12):1299-1313.

[14]

ZhaoB, YeX, YuJ, et al. TEAD mediates YAP-dependent gene induction and growth control. Genes Dev. 2008;22(14):1962-1971.

[15]

FanF, HeZ, KongLL, et al. Pharmacological targeting of kinases MST1 and MST2 augments tissue repair and regeneration. Sci Transl Med. 2016;8(352):352ra108.

[16]

LoforeseG, Malinka T, KeoghA, et al. Impaired liver regeneration in aged mice can be rescued by silencing Hippo core kinases MST1 and MST2. EMBO Mol Med. 2017;9(1):46-60.

[17]

LuL, Finegold MJ, JohnsonRL. Hippo pathway coactivators Yap and Taz are required to coordinate mammalian liver regeneration. Exp Mol Med. 2018;50(1):e423.

[18]

KimW, ChoYS, WangX, et al. Hippo signaling is intrinsically regulated during cell cycle progression by APC/C(Cdh1). Proc Natl Acad Sci U S A. 2019;116(19):9423-9432.

[19]

YangS, ZhangL, LiuM, et al. CDK1 phosphorylation of YAP promotes mitotic defects and cell motility and is essential for neoplastic transformation. Cancer Res. 2013;73(22):6722-6733.

[20]

LinZ, YangZ, XieR, JiZ, GuanK, Zhang M. Decoding WW domain tandem-mediated target recognitions in tissue growth and cell polarity. eLife. 2019;8:e49439.

[21]

QiS, ZhongZ, ZhuY, et al. Two Hippo signaling modules orchestrate liver size and tumorigenesis. EMBO J. 2023;42(11):e112126.

[22]

YimlamaiD, Christodoulou C, GalliGG, et al. Hippo pathway activity influences liver cell fate. Cell. 2014;157(6):1324-1338.

[23]

MichalopoulosGK, Bhushan B. Liver regeneration: biological and pathological mechanisms and implications. Nat Rev Gastroenterol Hepatol. 2021;18(1):40-55.

[24]

XuS, XuY, LiuP, et al. The novel coronary artery disease risk gene JCAD/KIAA1462 promotes endothelial dysfunction and atherosclerosis. Eur Heart J. 2019;40(29):2398-2408.

[25]

JangW, KimT, KooJS, Kim SK, LimDS. Mechanical cue-induced YAP instructs Skp2-dependent cell cycle exit and oncogenic signaling. EMBO J. 2017;36(17):2510-2528.

[26]

TschuorC, Kachaylo E, UngethumU, et al. Yes-associated protein promotes early hepatocyte cell cycle progression in regenerating liver after tissue loss. FASEB Bioadv. 2019;1(1):51-61.

[27]

ZhangL, IyerJ, ChowdhuryA, et al. KIBRA regulates aurora kinase activity and is required for precise chromosome alignment during mitosis. J Biol Chem. 2012;287(41):34069-34077.

[28]

XiaoL, ChenY, JiM, et al. KIBRA protein phosphorylation is regulated by mitotic kinase aurora and protein phosphatase 1. J Biol Chem. 2011;286(42):36304-36315.

[29]

JiM, YangS, ChenY, Xiao L, ZhangL, DongJ. Phospho-regulation of KIBRA by CDK1 and CDC14 phosphatase controls cell-cycle progression. Biochem J. 2012;447(1):93-102.

[30]

DouglasG, MehtaV, Al Haj ZenA, et al. A key role for the novel coronary artery disease gene JCAD in atherosclerosis via shear stress mechanotransduction. Cardiovasc Res. 2020;116(11):1863-1874.

[31]

ErdmannJ, Willenborg C, NahrstaedtJ, et al. Genome-wide association study identifies a new locus for coronary artery disease on chromosome 10p11.23. Eur Heart J. 2011;32(2):158-168.

[32]

PreziosiM, OkabeH, PoddarM, Singh S, MongaSP. Endothelial Wnts regulate beta-catenin signaling in murine liver zonation and regeneration: a sequel to the Wnt–Wnt situation. Hepatol Commun. 2018;2(7):845-860.

[33]

XieL, ChenH, ZhangL, et al. JCAD deficiency attenuates activation of hepatic stellate cells and cholestatic fibrosis. Clin Mol Hepatol. 2024.

[34]

LiuL, ZernMA, LizarzaburuME, NantzMH, WuJ. Poly(cationic lipid)-mediated in vivo gene delivery to mouse liver. Gene Ther. 2003;10(2):180-187.

[35]

LiuX-J, XieL, DuK, et al. Succinate-GPR-91 receptor signalling is responsible for nonalcoholic steatohepatitis-associated fibrosis: effects of DHA supplementation. Liver Int. 2020;40(4):830-843.

[36]

LiuXJ, DuanNN, LiuC, NiuC, LiuXP, Wu J. Characterization of a murine nonalcoholic steatohepatitis model induced by high fat high calorie diet plus fructose and glucose in drinking water. Lab Inves. 2018;98(9):1184-1199.

[37]

ZhouXT, DingJ, LiHY, et al. Hedgehog signalling mediates drug resistance through targeting TAP1 in hepatocellular carcinoma. J Cel Mol Med. 2020;24(7):4298-4311.

[38]

FanYH, DingJ, NguyenS, et al. Aberrant hedgehog signaling is responsible for the highly invasive behavior of a subpopulation of hepatoma cells. Oncogene. 2016;35(1):116-124.

[39]

SanjanaNE, ShalemO, ZhangF. Improved vectors and genome-wide libraries for CRISPR screening. Nat Methods. 2014;11(8):783-784.

[40]

KohSB, Mascalchi P, RodriguezE, et al. A quantitative Fast-FUCCI assay defines cell cycle dynamics at a single-cell level. J Cell Sci. 2017;130(2):512-520.

[41]

Sakaue-SawanoA, Kurokawa H, MorimuraT, et al. Visualizing spatiotemporal dynamics of multicellular cell-cycle progression. Cell. 2008;132(3):487-498.

[42]

HuH, GehartH, ArtegianiB, et al. Long-term expansion of functional mouse and human hepatocytes as 3D organoids. Cell. 2018;175(6):1591-1606.e19.

[43]

LiWC, RalphsKL, ToshD. Isolation and culture of adult mouse hepatocytes. Methods Mol Biol. 2010;633:185-196.

RIGHTS & PERMISSIONS

2024 The Authors. Clinical and Translational Medicine published by John Wiley & Sons Australia, Ltd on behalf of Shanghai Institute of Clinical Bioinformatics.

AI Summary AI Mindmap
PDF

408

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/