Using permeation guidelines to design new antibiotics—A PASsagE into Pseudomonas aeruginosa

Brett N. Cain , Paul J. Hergenrother

Clinical and Translational Medicine ›› 2024, Vol. 14 ›› Issue (3) : e1600

PDF
Clinical and Translational Medicine ›› 2024, Vol. 14 ›› Issue (3) : e1600 DOI: 10.1002/ctm2.1600
EDITORIAL

Using permeation guidelines to design new antibiotics—A PASsagE into Pseudomonas aeruginosa

Author information +
History +
PDF

Cite this article

Download citation ▾
Brett N. Cain, Paul J. Hergenrother. Using permeation guidelines to design new antibiotics—A PASsagE into Pseudomonas aeruginosa. Clinical and Translational Medicine, 2024, 14(3): e1600 DOI:10.1002/ctm2.1600

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bergkessel M, Forte B, Gilbert IH. Small-molecule antibiotic drug development: need and challenges. ACS Infect Dis. 2023;9(11):2062-2071.

[2]

Lewis K. Platforms for antibiotic discovery. Nat Rev Drug Discov. 2013;12(5):371-387.

[3]

CDC. 2019 Antibiotic Resistance Threats Report. Accessed January 4, 2024.

[4]

Driscoll JA, Brody SL, Kollef MH. The epidemiology, pathogenesis and treatment of Pseudomonas aeruginosa infections. Drugs. 2007;67(3):351-368.

[5]

Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet. 2022;399(10325):629-655.

[6]

Chevalier S, Bouffartigues E, Bodilis J, et al. Structure, function and regulation of Pseudomonas aeruginosa porins. FEMS Microbiol Rev. 2017;41(5):698-722.

[7]

Aeschlimann JR. The role of multidrug efflux pumps in the antibiotic resistance of Pseudomonas aeruginosa and other gram-negative bacteria. Insights from the Society of Infectious Diseases Pharmacists. Pharmacotherapy. 2003;23(7):916-924.

[8]

Yoshimura F, Nikaido H. Permeability of Pseudomonas aeruginosa outer membrane to hydrophilic solutes. J Bacteriol. 1982;152(2):636-642.

[9]

Geddes EJ, Gugger MK, Garcia A, et al. Porin-independent accumulation in Pseudomonas enables antibiotic discovery. Nature. 2023;624(7990):145-153.

[10]

Geddes EJ, Li Z, Hergenrother PJ. An LC-MS/MS assay and complementary web-based tool to quantify and predict compound accumulation in E. coli. Nat Protoc. 2021;16(10):4833-4854.

[11]

Huigens RW, Morrison KC, Hicklin RW, Flood TA, Richter MF, Hergenrother PJ. A ring-distortion strategy to construct stereochemically complex and structurally diverse compounds from natural products. Nat Chem. 2013;5(3):195-202.

[12]

Richter MF, Drown BS, Riley AP, et al. Predictive compound accumulation rules yield a broad-spectrum antibiotic. Nature. 2017;545(7654):299-304.

[13]

Richter MF, Hergenrother PJ. The challenge of converting gram-positive-only compounds into broad-spectrum antibiotics. Ann NY Acad Sci. 2019;1435(1):18-38.

[14]

Cowan SW, Schirmer T, Rummel G, et al. Crystal structures explain functional properties of two E. coli porins. Nature. 1992;358(6389):727-733.

[15]

Haloi N, Vasan AK, Geddes EJ, et al. Rationalizing the generation of broad spectrum antibiotics with the addition of a positive charge. Chem Sci. 2021;12(45):15028-15044.

[16]

Acharya A, Jana K, Kleinekathofer U. Antibiotic charge profile determines the extent of L3 dynamics in OmpF: an expedited passage for molecules with a positive charge. J Phys Chem B. 2023;127(50):10766-10777.

[17]

Maher C, Maharjan R, Sullivan G, Cain AK, Hassan KA. Breaching the barrier: genome-wide investigation into the role of a primary amine in promoting E. coli outer-membrane passage and growth inhibition by ampicillin. Microbiol Spectr. 2022; 10(6):e0359322.

[18]

Ude J, Tripathi V, Buyck JM, et al. Outer membrane permeability: antimicrobials and diverse nutrients bypass porins in Pseudomonas aeruginosa. Proc Natl Acad Sci USA. 2021;118(31):e2107644118.

[19]

Theuretzbacher U, Blasco B, Duffey M, Piddock LJV. Unrealized targets in the discovery of antibiotics for gram-negative bacterial infections. Nat Rev Drug Discov. 2023;22(12):957-975.

[20]

Krishnamoorthy G, Leus IV, Weeks JW, Wolloscheck D, Rybenkov VV, Zgurskaya HI. Synergy between active efflux and outer membrane diffusion defines rules of antibiotic permeation into gram-negative bacteria. mBio. 2017;8(5):e01172-17

[21]

Stoorza AM, Duerfeldt AS. Guiding the way: traditional medicinal chemistry inspiration for rational gram-negative drug design. J Med Chem. 2024;67(1):65-80.

[22]

Motika SE, Ulrich RJ, Geddes EJ, Lee HY, Lau GW, Hergenrother PJ. Gram-negative antibiotic active through inhibition of an essential riboswitch. J Am Chem Soc. 2020;142(24):10856-10862.

[23]

Parker EN, Cain BN, Hajian B, et al. An iterative approach guides discovery of the FabI inhibitor fabimycin, a late-stage antibiotic candidate with in vivo efficacy against drug-resistant gram-negative infections. ACS Cent Sci. 2022;8(8):1145-1158.

[24]

Parker EN, Drown BS, Geddes EJ, et al. Implementation of permeation rules leads to a FabI inhibitor with activity against gram-negative pathogens. Nat Microbiol. 2020;5(1):67-75.

[25]

Hu Y, Shi H, Zhou M, et al. Discovery of pyrido[2,3-b]indole derivatives with gram-negative activity targeting both DNA gyrase and topoisomerase IV. J Med Chem. 2020;63(17):9623-9649.

[26]

Andrews LD, Kane TR, Dozzo P, et al. Optimization and mechanistic characterization of pyridopyrimidine inhibitors of bacterial biotin carboxylase. J Med Chem. 2019;62(16):7489-7505.

[27]

Lukezic T, Fayad AA, Bader C, et al. Engineering atypical tetracycline formation in amycolatopsis sulphurea for the production of modified chelocardin antibiotics. ACS Chem Biol. 2019;14(3):468-477.

[28]

Skepper CK, Armstrong D, Balibar CJ, et al. Topoisomerase inhibitors addressing fluoroquinolone resistance in gram-negative bacteria. J Med Chem. 2020;63(14):7773-7816.

[29]

Brem J, Panduwawala T, Hansen JU, et al. Imitation of beta-lactam binding enables broad-spectrum metallo-beta-lactamase inhibitors. Nat Chem. 2022;14(1):15-24.

[30]

Schumacher CE, Rausch M, Greven T, Neudorfl JM, Schneider T, Schmalz HG. Total synthesis and antibiotic properties of amino-functionalized aromatic terpenoids related to erogorgiaene and the pseudopterosins. Eur J Org Chem. 2022;2022(26):e202200058.

[31]

Huang KJ, Pantua H, Diao J, et al. Deletion of a previously uncharacterized lipoprotein lirL confers resistance to an inhibitor of type II signal peptidase in Acinetobacter baumannii. Proc Natl Acad Sci USA. 2022;119(38):e2123117119.

[32]

Onyedibe KI, Nemeth AM, Dayal N, et al. Re-sensitization of multidrug-resistant and colistin-resistant gram-negative bacteria to colistin by Povarov/Doebner-derived compounds. ACS Infect Dis. 2023;9(2):283-295.

[33]

Goethe O, DiBello M, Herzon SB. Total synthesis of structurally diverse pleuromutilin antibiotics. Nat Chem. 2022;14(11):1270-1277.

[34]

Perlmutter SJ, Geddes EJ, Drown BS, Motika SE, Lee MR, Hergenrother PJ. Compound uptake into E. coli can be facilitated by N-alkyl guanidiniums and pyridiniums. ACS Infect Dis. 2021;7(1):162-173.

[35]

Dean CR, Visalli MA, Projan SJ, Sum PE, Bradford PA. Efflux-mediated resistance to tigecycline (GAR-936) in Pseudomonas aeruginosa PAO1. Antimicrob Agents Chemother. 2003;47(3):972-978.

[36]

Payne DJ, Gwynn MN, Holmes DJ, Pompliano DL. Drugs for bad bugs: confronting the challenges of antibacterial discovery. Nat Rev Drug Discov. 2007;6(1):29-40.

[37]

Tommasi R, Brown DG, Walkup GK, Manchester JI, Miller AA. ESKAPEing the labyrinth of antibacterial discovery. Nat Rev Drug Discov. 2015;14(8):529-542.

[38]

Martinez-Fructuoso L, Arends SJR, Freire VF, et al. Screen for new antimicrobial natural products from the NCI program for natural product discovery prefractionated extract library. ACS Infect Dis. 2023;9(6):1245-1256.

[39]

Richter MF, Hergenrother PJ. Reaction: broad-spectrum antibiotics, a call for chemists. Chem. 2017;3(1):10-13.

[40]

Ling LL, Schneider T, Peoples AJ, et al. A new antibiotic kills pathogens without detectable resistance. Nature. 2015;517(7535):455-459.

[41]

Imai Y, Meyer KJ, Iinishi A, et al. A new antibiotic selectively kills gram-negative pathogens. Nature. 2019;576(7787):459-464.

[42]

Zampaloni C, Mattei P, Bleicher K, et al. A novel antibiotic class targeting the lipopolysaccharide transporter. Nature. 2024;625(7995):566-571.

RIGHTS & PERMISSIONS

2024 The Authors. Clinical and Translational Medicine published by John Wiley & Sons Australia, Ltd on behalf of Shanghai Institute of Clinical Bioinformatics.

AI Summary AI Mindmap
PDF

207

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/