Revisiting the chaperonin T-complex protein-1 ring complex in human health and disease: A proteostasis modulator and beyond

Chenglong Zeng , Shenqi Han , Yonglong Pan , Zhao Huang , Binhao Zhang , Bixiang Zhang

Clinical and Translational Medicine ›› 2024, Vol. 14 ›› Issue (2) : e1592

PDF
Clinical and Translational Medicine ›› 2024, Vol. 14 ›› Issue (2) : e1592 DOI: 10.1002/ctm2.1592
REVIEW

Revisiting the chaperonin T-complex protein-1 ring complex in human health and disease: A proteostasis modulator and beyond

Author information +
History +
PDF

Abstract

Background: Disrupted protein homeostasis (proteostasis) has been demonstrated to facilitate the progression of various diseases. The cytosolic T-complex protein-1 ring complex (TRiC/CCT) was discovered to be a critical player in orchestrating proteostasis by folding eukaryotic proteins, guiding intracellular localisation and suppressing protein aggregation. Intensive investigations of TRiC/CCT in different fields have improved the understanding of its role and molecular mechanism in multiple physiological and pathological processes.

Main body: In this review, we embark on a journey through the dynamic protein folding cycle of TRiC/CCT, unraveling the intricate mechanisms of its substrate selection, recognition, and intriguing folding and assembly processes. In addition to discussing the critical role of TRiC/CCT in maintaining proteostasis, we detail its involvement in cell cycle regulation, apoptosis, autophagy, metabolic control, adaptive immunity and signal transduction processes. Furthermore, we meticulously catalogue a compendium of TRiC-associated diseases, such as neuropathies, cardiovascular diseases and various malignancies. Specifically, we report the roles and molecular mechanisms of TRiC/CCT in regulating cancer formation and progression. Finally, we discuss unresolved issues in TRiC/CCT research, highlighting the efforts required for translation to clinical applications, such as diagnosis and treatment.

Conclusion: This review aims to provide a comprehensive view of TRiC/CCT for researchers to inspire further investigations and explorations of potential translational possibilities.

Keywords

cancer hallmarks / drug resistance / metastasis / neuropathies / proteostasis / signal transduction / TRiC/CCT

Cite this article

Download citation ▾
Chenglong Zeng, Shenqi Han, Yonglong Pan, Zhao Huang, Binhao Zhang, Bixiang Zhang. Revisiting the chaperonin T-complex protein-1 ring complex in human health and disease: A proteostasis modulator and beyond. Clinical and Translational Medicine, 2024, 14(2): e1592 DOI:10.1002/ctm2.1592

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Balchin D, Hayer-Hartl M, Hartl FU. In vivo aspects of protein folding and quality control. Science. 2016;353(6294):aac4354.

[2]

Brehme M, Voisine C, Rolland T, et al. A chaperome subnetwork safeguards proteostasis in aging and neurodegenerative disease. Cell Rep. 2014;9(3):1135-1150.

[3]

Anfinsen CB. Principles that govern the folding of protein chains. Science. 1973;181(4096):223-230.

[4]

Hu C, Yang J, Qi Z, et al. Heat shock proteins: biological functions, pathological roles, and therapeutic opportunities. MedComm (2020). 2022;3(3):e161.

[5]

Ghozlan H, Cox A, Nierenberg D, et al. The TRiCky business of protein folding in health and disease. Front Cell Dev Biol. 2022;10:906530.

[6]

Jin M, Liu C, Han W, Cong Y. TRiC/CCT chaperonin: structure and function. Subcell Biochem. 2019;93:625-654.

[7]

Gestaut D, Roh SH, Ma B, et al. The chaperonin TRiC/CCT associates with prefoldin through a conserved electrostatic interface essential for cellular proteostasis. Cell. 2019;177(3):751-765.e15.

[8]

Roh S-H, Kasembeli M, Bakthavatsalam D, Chiu W, Tweardy D. Contribution of the type II chaperonin, TRiC/CCT, to oncogenesis. Int J Mol Sci. 2015;16(11):26706-26720.

[9]

Gestaut D, Zhao Y, Park J, et al. Structural visualization of the tubulin folding pathway directed by human chaperonin TRiC/CCT. Cell. 2023;186(9):2038.

[10]

Balchin D, Miličić G, Strauss M, Hayer-Hartl M, Hartl FU. Pathway of actin folding directed by the eukaryotic chaperonin TRiC. Cell. 2018;174(6):1507-1521.e16.

[11]

Wang DY, Kamuda K, Montoya G, Mesa P. The TRiC/CCT chaperonin and its role in uncontrolled proliferation. Adv Exp Med Biol. 2020;1243:21-40.

[12]

Yokota S-I, Yamamoto Y, Shimizu K, et al. Increased expression of cytosolic chaperonin CCT in human hepatocellular and colonic carcinoma. Cell Stress Chaperones. 2001;6(4):345-350.

[13]

Yoo BC, Vlkolinsky R, Engidawork E, Cairns N, Fountoulakis M, Lubec G. Differential expression of molecular chaperones in brain of patients with Down syndrome. Electrophoresis. 2001;22(6):1233-1241.

[14]

Yoo BC, Fountoulakis M, Dierssen M, Lubec G. Expression patterns of chaperone proteins in cerebral cortex of the fetus with Down syndrome: dysregulation of T-complex protein 1. J Neural Transm Suppl. 2001;2001(61):321-334.

[15]

Schuller E, Gulesserian T, Seidl R, Cairns N, Lubec G. Brain T-complex polypeptide 1 (TCP-1) related to its natural substrate beta1 tubulin is decreased in Alzheimer's disease. Life Sci. 2001;69(3):263-270.

[16]

Joachimiak LA, Walzthoeni T, Liu CW, Aebersold R, Frydman J. The structural basis of substrate recognition by the eukaryotic chaperonin TRiC/CCT. Cell. 2014;159(5):1042-1055.

[17]

Kubota H, Hynes G, Carne A, Ashworth A, Willison K. Identification of six Tcp-1-related genes encoding divergent subunits of the TCP-1-containing chaperonin. Curr Biol. 1994;4(2):89-99.

[18]

Archibald JM, Logsdon JM, Doolittle WF. Origin and evolution of eukaryotic chaperonins: phylogenetic evidence for ancient duplications in CCT genes. Mol Biol Evol. 2000;17(10):1456-1466.

[19]

Ditzel L, Löwe J, Stock D, et al. Crystal structure of the thermosome, the archaeal chaperonin and homolog of CCT. Cell. 1998;93(1):125-138.

[20]

Kim S, Willison KR, Horwich AL. Cystosolic chaperonin subunits have a conserved ATPase domain but diverged polypeptide-binding domains. Trends Biochem Sci. 1994;19(12):543-548.

[21]

Kalisman N, Adams CM, Levitt M. Subunit order of eukaryotic TRiC/CCT chaperonin by cross-linking, mass spectrometry, and combinatorial homology modeling. Proc Natl Acad Sci U S A. 2012;109(8):2884-2889.

[22]

Sergeeva OA, Haase-Pettingell C, King JA. Co-expression of CCT subunits hints at TRiC assembly. Cell Stress Chaperones. 2019;24(6):1055-1065.

[23]

Blanc M, David F, Abrami L, et al. SwissPalm: protein palmitoylation database. F1000Res. 2015;4:261.

[24]

Collier MP, Moreira KB, Li KH, et al. Native mass spectrometry analyses of chaperonin complex TRiC/CCT reveal subunit N-terminal processing and re-association patterns. Sci Rep. 2021;11(1):13084.

[25]

Liou AK, McCormack EA, Willison KR. The chaperonin containing TCP-1 (CCT) displays a single-ring mediated disassembly and reassembly cycle. Biol Chem. 1998;379(3):311-319.

[26]

Yokota S-I, Kayano T, Ohta T, et al. Proteasome-dependent degradation of cytosolic chaperonin CCT. Biochem Biophys Res Commun. 2000;279(2):712-717.

[27]

Kim S, Park D-Y, Lee D, et al. Vaccinia-related kinase 2 mediates accumulation of polyglutamine aggregates via negative regulation of the chaperonin TRiC. Mol Cell Biol. 2014;34(4):643-652.

[28]

Kim S, Lee D, Lee J, et al. Vaccinia-related kinase 2 controls the stability of the eukaryotic chaperonin TRiC/CCT by inhibiting the deubiquitinating enzyme USP25. Mol Cell Biol. 2015;35(10):1754-1762.

[29]

Lopez T, Dalton K, Frydman J. The mechanism and function of group II chaperonins. J Mol Biol. 2015;427(18):2919-2930.

[30]

Dekker C, Stirling PC, Mccormack EA, et al. The interaction network of the chaperonin CCT. Embo J. 2008;27(13):1827-1839.

[31]

Gao Y, Thomas JO, Chow RL, Lee G-H, Cowan NJ. A cytoplasmic chaperonin that catalyzes beta-actin folding. Cell. 1992;69(6):1043-1050.

[32]

Srikakulam R, Winkelmann DA. Myosin II folding is mediated by a molecular chaperonin. J Biol Chem. 1999;274(38):27265-27273.

[33]

Cuéllar J, Ludlam WG, Tensmeyer NC, et al. Structural and functional analysis of the role of the chaperonin CCT in mTOR complex assembly. Nat Commun. 2019;10(1):2865.

[34]

Kelly JJ, Tranter D, Pardon E, et al. Snapshots of actin and tubulin folding inside the TRiC chaperonin. Nat Struct Mol Biol. 2022;29(5):420-429.

[35]

Brackley KI, Grantham J. Subunits of the chaperonin CCT interact with F-actin and influence cell shape and cytoskeletal assembly. Exp Cell Res. 2010;316(4):543-553.

[36]

Grantham J, Brackley KI, Willison KR. Substantial CCT activity is required for cell cycle progression and cytoskeletal organization in mammalian cells. Exp Cell Res. 2006;312(12):2309-2324.

[37]

Pavel M, Imarisio S, Menzies FM, et al. CCT complex restricts neuropathogenic protein aggregation via autophagy. Nat Commun. 2016;7:13821.

[38]

Tam S, Geller R, Spiess C, Frydman J. The chaperonin TRiC controls polyglutamine aggregation and toxicity through subunit-specific interactions. Nat Cell Biol. 2006;8(10):1155-1162.

[39]

Noormohammadi A, Khodakarami A, Gutierrez-Garcia R, et al. Somatic increase of CCT8 mimics proteostasis of human pluripotent stem cells and extends C. elegans lifespan. Nat Commun. 2016;7:13649.

[40]

Betancourt Moreira K, Collier MP, Leitner A, et al. A hierarchical assembly pathway directs the unique subunit arrangement of TRiC/CCT. Mol Cell. 2023;83(17):3123-3139.e8.

[41]

Liu X, Lin C-Y, Lei M, Yan S, Zhou T, Erikson RL. CCT chaperonin complex is required for the biogenesis of functional Plk1. Mol Cell Biol. 2005;25(12):4993-5010.

[42]

Piano V, Alex A, Stege P, et al. CDC20 assists its catalytic incorporation in the mitotic checkpoint complex. Science. 2021;371(6524):67-71.

[43]

Yokota S-I, Yanagi H, Yura T, Kubota H. Cytosolic chaperonin is up-regulated during cell growth. Preferential expression and binding to tubulin at G(1)/S transition through early S phase. J Biol Chem. 1999;274(52):37070-37078.

[44]

Camasses A, Bogdanova A, Shevchenko A, Zachariae W. The CCT chaperonin promotes activation of the anaphase-promoting complex through the generation of functional Cdc20. Mol Cell. 2003;12(1):87-100.

[45]

Wang Q, Huang W-R, Chih W-Y, et al. Cdc20 and molecular chaperone CCT2 and CCT5 are required for the Muscovy duck reovirus p10.8-induced cell cycle arrest and apoptosis. Vet Microbiol. 2019;235:151-163.

[46]

Won K-A, Schumacher RJ, Farr GW, Horwich AL, Reed SI. Maturation of human cyclin E requires the function of eukaryotic chaperonin CCT. Mol Cell Biol. 1998;18(12):7584-7589.

[47]

Edgar BA, Zielke N, Gutierrez C. Endocycles: a recurrent evolutionary innovation for post-mitotic cell growth. Nat Rev Mol Cell Biol. 2014;15(3):197-210.

[48]

Niu N, Mercado-Uribe I, Liu J. Dedifferentiation into blastomere-like cancer stem cells via formation of polyploid giant cancer cells. Oncogene. 2017;36(34):4887-4900.

[49]

Ohhara Y, Nakamura A, Kato Y, Yamakawa-Kobayashi K. Chaperonin TRiC/CCT supports mitotic exit and entry into endocycle in Drosophila. PLoS Genet. 2019;15(4):e1008121.

[50]

Meng Y, Yang L, Wei X, et al. CCT5 interacts with cyclin D1 promoting lung adenocarcinoma cell migration and invasion. Biochem Biophys Res Commun. 2021;567:222-229.

[51]

Kaisari S, Sitry-Shevah D, Miniowitz-Shemtov S, Teichner A, Hershko A. Role of CCT chaperonin in the disassembly of mitotic checkpoint complexes. Proc Natl Acad Sci U S A. 2017;114(5):956-961.

[52]

Chen X, Qi Y, Wu Z, et al. Structural insights into preinitiation complex assembly on core promoters. Science. 2021;372(6541):eaba8490.

[53]

Patel AB, Greber BJ, Nogales E. Recent insights into the structure of TFIID, its assembly, and its binding to core promoter. Curr Opin Struct Biol. 2020;61:17-24.

[54]

Antonova SV, Haffke M, Corradini E, et al. Chaperonin CCT checkpoint function in basal transcription factor TFIID assembly. Nat Struct Mol Biol. 2018;25(12):1119-1127.

[55]

Inoue Y, Aizaki H, Hara H, et al. Chaperonin TRiC/CCT participates in replication of hepatitis C virus genome via interaction with the viral NS5B protein. Virology. 2011;410(1):38-47.

[56]

Zhang X, Lin X, Qin C, et al. Avian chaperonin containing TCP1 subunit 5 supports influenza A virus replication by interacting with viral nucleoprotein, PB1, and PB2 proteins. Front Microbiol. 2020;11:538355.

[57]

Fislová T, Thomas B, Graef KM, Fodor E. Association of the influenza virus RNA polymerase subunit PB2 with the host chaperonin CCT. J Virol. 2010;84(17):8691-8699.

[58]

Yam AY, Xia Y, Lin H-TJ, Burlingame A, Gerstein M, Frydman J. Defining the TRiC/CCT interactome links chaperonin function to stabilization of newly made proteins with complex topologies. Nat Struct Mol Biol. 2008;15(12):1255-1262.

[59]

Roobol A, Roobol J, Carden MJ, et al. The chaperonin CCT interacts with and mediates the correct folding and activity of three subunits of translation initiation factor eIF3: b, i and h. Biochem J. 2014;458(2):213-224.

[60]

Hong HX, Zhang YM, Xu H, Su ZY, Sun P. Immortalization of swine umbilical vein endothelial cells with human telomerase reverse transcriptase. Mol Cells. 2007;24(3):358-363.

[61]

Egan ED, Collins K. Biogenesis of telomerase ribonucleoproteins. RNA. 2012;18(10):1747-1759.

[62]

Roake CM, Artandi SE. Regulation of human telomerase in homeostasis and disease. Nat Rev Mol Cell Biol. 2020;21(7):384-397.

[63]

Freund A, Zhong FL, Venteicher AS, et al. Proteostatic control of telomerase function through TRiC-mediated folding of TCAB1. Cell. 2014;159(6):1389-1403.

[64]

Emmett MJ, Lazar MA. Integrative regulation of physiology by histone deacetylase 3. Nat Rev Mol Cell Biol. 2019;20(2):102-115.

[65]

Guenther MG, Yu J, Kao GD, Yen TJ, Lazar MA. Assembly of the SMRT-histone deacetylase 3 repression complex requires the TCP-1 ring complex. Genes Dev. 2002;16(24):3130-3135.

[66]

Tang H-W, Weng J-H, Lee WX, et al. mTORC1-chaperonin CCT signalling regulates m(6)A RNA methylation to suppress autophagy. Proc Natl Acad Sci U S A. 2021;118(10):e2021945118.

[67]

Blumenthal D, Burkhardt JK. Multiple actin networks coordinate mechanotransduction at the immunological synapse. J Cell Biol. 2020;219(2):e201911058.

[68]

Martín-Cófreces NB, Robles-Valero J, Cabrero JR, et al. MTOC translocation modulates IS formation and controls sustained T cell signalling. J Cell Biol. 2008;182(5):951-962.

[69]

Martin-Cofreces NB, Chichon FJ, Calvo E, et al. The chaperonin CCT controls T cell receptor-driven 3D configuration of centrioles. Sci Adv. 2020;6(49):eabb7242.

[70]

Martin-Cofreces NB, Valpuesta JM, Sánchez-Madrid F. T cell asymmetry and metabolic crosstalk can fine-tune immunological synapses. Trends Immunol. 2021;42(8):649-653.

[71]

Hodeify R, Nandakumar M, Own M, et al. The CCT chaperonin is a novel regulator of Ca(2+) signalling through modulation of Orai1 trafficking. Sci Adv. 2018;4(9):eaau1935.

[72]

Oftedal BE, Maio S, Handel AE, et al. The chaperonin CCT8 controls proteostasis essential for T cell maturation, selection, and function. Commun Biol. 2021;4(1):681.

[73]

Klionsky DJ, Abdel-Aziz AK, Abdelfatah S, et al. Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition). Autophagy. 2021;17(1):1-382.

[74]

Kim AR, Choi KW. TRiC/CCT chaperonins are essential for organ growth by interacting with insulin/TOR signalling in Drosophila. Oncogene. 2019;38(24):4739-4754.

[75]

Wang J-Z, Zhu H, You P, et al. Upregulated YB-1 protein promotes glioblastoma growth through a YB-1/CCT4/mLST8/mTOR pathway. J Clin Invest. 2022;132(8):e146536.

[76]

Ma X, Lu C, Chen Y, et al. CCT2 is an aggrephagy receptor for clearance of solid protein aggregates. Cell. 2022;185(8):1325-1345.e22.

[77]

Rosenbaum DM, Rasmussen SG, Kobilka BK. The structure and function of G-protein-coupled receptors. Nature. 2009;459(7245):356-363.

[78]

Mclaughlin JN, Thulin CD, Hart SJ, Resing KA, Ahn NG, Willardson BM. Regulatory interaction of phosducin-like protein with the cytosolic chaperonin complex. Proc Natl Acad Sci U S A. 2002;99(12):7962-7967.

[79]

Wells CA, Dingus J, Hildebrandt JD. Role of the chaperonin CCT/TRiC complex in G protein betagamma-dimer assembly. J Biol Chem. 2006;281(29):20221-20232.

[80]

Plimpton RL, Cuéllar J, Lai CWJ, et al. Structures of the Gβ-CCT and PhLP1-Gβ-CCT complexes reveal a mechanism for G-protein β-subunit folding and Gβγ dimer assembly. Proc Natl Acad Sci U S A. 2015;112(8):2413-2418.

[81]

Génier S, Degrandmaison J, Moreau P, Labrecque P, Hébert TE, Parent J-L. Regulation of GPCR expression through an interaction with CCT7, a subunit of the CCT/TRiC complex. Mol Biol Cell. 2016;27(24):3800-3812.

[82]

Ying Z, Tian H, Li Y, et al. CCT6A suppresses SMAD2 and promotes prometastatic TGF-β signalling. J Clin Invest. 2017;127(5):1725-1740.

[83]

Chang Y-X, Lin Y-F, Chen C-L, Huang M-S, Hsiao M, Liang P-H. Chaperonin-containing TCP-1 promotes cancer chemoresistance and metastasis through the AKT-GSK3β-β-catenin and XIAP-survivin pathways. Cancers (Basel). 2020;12(12):3865.

[84]

Tang N, Cai X, Peng L, Liu H, Chen Y. TCP1 regulates Wnt7b/β-catenin pathway through P53 to influence the proliferation and migration of hepatocellular carcinoma cells. Signal Transduct Target Ther. 2020;5(1):169.

[85]

Jastrzebski K, Hannan KM, House CM, Hung SS-C, Pearson RB, Hannan RD. A phospho-proteomic screen identifies novel S6K1 and mTORC1 substrates revealing additional complexity in the signalling network regulating cell growth. Cell Signal. 2011;23(8):1338-1347.

[86]

Abe Y, Yoon S-O, Kubota K, Mendoza MC, Gygi SP, Blenis J. p90 ribosomal S6 kinase and p70 ribosomal S6 kinase link phosphorylation of the eukaryotic chaperonin containing TCP-1 to growth factor, insulin, and nutrient signalling. J Biol Chem. 2009;284(22):14939-14948.

[87]

Liu Y, Zhang X, Lin J, et al. CCT3 acts upstream of YAP and TFCP2 as a potential target and tumour biomarker in liver cancer. Cell Death Dis. 2019;10(9):644.

[88]

Hetz C. Adapting the proteostasis capacity to sustain brain healthspan. Cell. 2021;184(6):1545-1560.

[89]

Tabrizi SJ, Flower MD, Ross CA, Wild EJ. Huntington disease: new insights into molecular pathogenesis and therapeutic opportunities. Nat Rev Neurol. 2020;16(10):529-546.

[90]

Behrends C, Langer CA, Boteva R, et al. Chaperonin TRiC promotes the assembly of polyQ expansion proteins into nontoxic oligomers. Mol Cell. 2006;23(6):887-897.

[91]

Kitamura A, Kubota H, Pack C-G, et al. Cytosolic chaperonin prevents polyglutamine toxicity with altering the aggregation state. Nat Cell Biol. 2006;8(10):1163-1170.

[92]

Shahmoradian SH, Galaz-Montoya JG, Schmid MF, et al. TRiC's tricks inhibit huntingtin aggregation. Elife. 2013;2:e00710.

[93]

Lee E, Ryu HG, Kim S, Lee D, Jeong Y-H, Kim K-T. Glycogen synthase kinase 3β suppresses polyglutamine aggregation by inhibiting Vaccinia-related kinase 2 activity. Sci Rep. 2016;6:29097.

[94]

Ryu HG, Kim S, Lee S, et al. HNRNP Q suppresses polyglutamine huntingtin aggregation by post-transcriptional regulation of vaccinia-related kinase 2. J Neurochem. 2019;149(3):413-426.

[95]

Sontag EM, Joachimiak LA, Tan Z, et al. Exogenous delivery of chaperonin subunit fragment ApiCCT1 modulates mutant Huntingtin cellular phenotypes. Proc Natl Acad Sci U S A. 2013;110(8):3077-3082.

[96]

Darrow MC, Sergeeva OA, Isas JM, et al. Structural mechanisms of mutant huntingtin aggregation suppression by the synthetic chaperonin-like CCT5 complex explained by cryoelectron tomography. J Biol Chem. 2015;290(28):17451-17461.

[97]

Zhao X, Chen X-Q, Han E, et al. TRiC subunits enhance BDNF axonal transport and rescue striatal atrophy in Huntington's disease. Proc Natl Acad Sci U S A. 2016;113(38):E5655-E5664.

[98]

Chen X-Q, Fang F, Florio JB, et al. T-complex protein 1-ring complex enhances retrograde axonal transport by modulating tau phosphorylation. Traffic. 2018;19(11):840-853.

[99]

Caron NS, Dorsey ER, Hayden MR. Therapeutic approaches to Huntington disease: from the bench to the clinic. Nat Rev Drug Discov. 2018;17(10):729-750.

[100]

Xie H, Hu H, Chang M, et al. Identification of chaperones in a MPP(+)-induced and ATRA/TPA-differentiated SH-SY5Y cell PD model. Am J Transl Res. 2016;8(12):5659-5671.

[101]

Sot B, Rubio-Muñoz A, Leal-Quintero A, et al. The chaperonin CCT inhibits assembly of α-synuclein amyloid fibrils by a specific, conformation-dependent interaction. Sci Rep. 2017;7:40859.

[102]

Khabirova E, Moloney A, Marciniak SJ, et al. The TRiC/CCT chaperone is implicated in Alzheimer's disease based on patient GWAS and an RNAi screen in Aβ-expressing Caenorhabditis elegans. PLoS One. 2014;9(7):e102985.

[103]

Shen L, Chen C, Yang A, Chen Y, Liu Q, Ni J. Redox proteomics identification of specifically carbonylated proteins in the hippocampi of triple transgenic Alzheimer's disease mice at its earliest pathological stage. J Proteomics. 2015;123:101-113.

[104]

Liu L, Wu Q, Zhong W, et al. Microarray analysis of differential gene expression in Alzheimer's disease identifies potential biomarkers with diagnostic value. Med Sci Monit. 2020;26:e919249.

[105]

Ahmadi A, Argulian E, Leipsic J, Newby DE, Narula J. From subclinical atherosclerosis to plaque progression and acute coronary events: JACC state-of-the-art review. J Am Coll Cardiol. 2019;74(12):1608-1617.

[106]

Prabhu SD, Frangogiannis NG. The biological basis for cardiac repair after myocardial infarction: from inflammation to fibrosis. Circ Res. 2016;119(1):91-112.

[107]

Erdmann J, Stark K, Esslinger UB, et al. Dysfunctional nitric oxide signalling increases risk of myocardial infarction. Nature. 2013;504(7480):432-436.

[108]

Kattoor AJ, Kanuri SH, Mehta JL. Role of Ox-LDL and LOX-1 in atherogenesis. Curr Med Chem. 2019;26(9):1693-1700.

[109]

Bakthavatsalam D, Soung RH, Tweardy DJ, Chiu W, Dixon RAF, Woodside DG. Chaperonin-containing TCP-1 complex directly binds to the cytoplasmic domain of the LOX-1 receptor. FEBS Lett. 2014;588(13):2133-2140.

[110]

Boudiaf-Benmammar C, Cresteil T, Melki R. The cytosolic chaperonin CCT/TRiC and cancer cell proliferation. PLoS One. 2013;8(4):e60895.

[111]

Wang G, Zhang M, Meng P, et al. Anticarin-β shows a promising anti-osteosarcoma effect by specifically inhibiting CCT4 to impair proteostasis. Acta Pharm Sin B. 2022;12(5):2268-2279.

[112]

Lin Y-F, Tsai W-P, Liu H-G, Liang P-H. Intracellular beta-tubulin/chaperonin containing TCP1-beta complex serves as a novel chemotherapeutic target against drug-resistant tumors. Cancer Res. 2009;69(17):6879-6888.

[113]

Liao Q, Ren Y, Yang Y, et al. CCT8 recovers WTp53-suppressed cell cycle evolution and EMT to promote colorectal cancer progression. Oncogenesis. 2021;10(12):84.

[114]

Fang J, Ma Y, Li Y, et al. CCT4 knockdown enhances the sensitivity of cisplatin by inhibiting glycolysis in human esophageal squamous cell carcinomas. Mol Carcinog. 2022;61(11):1043-1055.

[115]

Matthews HK, Bertoli C, de Bruin RAM. Cell cycle control in cancer. Nat Rev Mol Cell Biol. 2022;23(1):74-88.

[116]

Zeng G, Wang J, Huang Y, et al. Overexpressing CCT6A contributes to cancer cell growth by affecting the G1-to-S phase transition and predicts a negative prognosis in hepatocellular carcinoma. Onco Targets Ther. 2019;12:10427-10439.

[117]

Liu J, Huang L, Zhu Y, et al. Exploring the expression and prognostic value of the TCP1 ring complex in hepatocellular carcinoma and overexpressing its subunit 5 promotes HCC tumorigenesis. Front Oncol. 2021;11:739660.

[118]

Huang X, Wang X, Cheng C, et al. Chaperonin containing TCP1, subunit 8 (CCT8) is upregulated in hepatocellular carcinoma and promotes HCC proliferation. APMIS. 2014;122(11):1070-1079.

[119]

Zhang Y, Wang Y, Wei Y, et al. Molecular chaperone CCT3 supports proper mitotic progression and cell proliferation in hepatocellular carcinoma cells. Cancer Lett. 2016;372(1):101-109.

[120]

Marei HE, Althani A, Afifi N, et al. p53 signalling in cancer progression and therapy. Cancer Cell Int. 2021;21(1):703.

[121]

Trinidad AG, Muller PAJ, Cuellar J, et al. Interaction of p53 with the CCT complex promotes protein folding and wild-type p53 activity. Mol Cell. 2013;50(6):805-817.

[122]

Liu Q, Qi Y, Kong X, et al. Molecular and clinical characterization of CCT2 expression and prognosis via large-scale transcriptome profile of breast cancer. Front Oncol. 2021;11:614497.

[123]

Li L-J, Zhang L-S, Han Z-J, He Z-Y, Chen H, Li Y-M. Chaperonin containing TCP-1 subunit 3 is critical for gastric cancer growth. Oncotarget. 2017;8(67):111470-111481.

[124]

Čermák V, Dostál V, Jelínek M, et al. Microtubule-targeting agents and their impact on cancer treatment. Eur J Cell Biol. 2020;99(4):151075.

[125]

Yaffe MB, Farr GW, Miklos D, Horwich AL, Sternlicht ML, Sternlicht H. TCP1 complex is a molecular chaperone in tubulin biogenesis. Nature. 1992;358(6383):245-248.

[126]

Lin YF, Lee YF, Liang PH. Targeting β-tubulin:CCT-β complexes incurs Hsp90- and VCP-related protein degradation and induces ER stress-associated apoptosis by triggering capacitative Ca2+ entry, mitochondrial perturbation and caspase overactivation. Cell Death Dis. 2012;3(11):e434.

[127]

Liu Y-J, Kumar V, Lin Y-F, Liang P-H. Disrupting CCT-β∶β-tubulin selectively kills CCT-β overexpressed cancer cells through MAPKs activation. Cell Death Dis. 2017;8(9):e3052.

[128]

Liu Y-J, Chang Y-J, Kuo Y-T, Liang P-H. Targeting β-tubulin/CCT-β complex induces apoptosis and suppresses migration and invasion of highly metastatic lung adenocarcinoma. Carcinogenesis. 2020;41(5):699-710.

[129]

Kasembeli M, Lau WCY, Roh S-H, et al. Modulation of STAT3 folding and function by TRiC/CCT chaperonin. PLoS Biol. 2014;12(4):e1001844.

[130]

Shi X, Cheng S, Wang W. Suppression of CCT3 inhibits malignant proliferation of human papillary thyroid carcinoma cell. Oncol Lett. 2018;15(6):9202-9208.

[131]

Ribatti D, Tamma R, Annese T. Epithelial-mesenchymal transition in cancer: a historical overview. Transl Oncol. 2020;13(6):100773.

[132]

Derynck R, Turley SJ, Akhurst RJ. TGFβ biology in cancer progression and immunotherapy. Nat Rev Clin Oncol. 2021;18(1):9-34.

[133]

Li Y, Liu C, Zhang X, et al. CCT5 induces epithelial-mesenchymal transition to promote gastric cancer lymph node metastasis by activating the Wnt/β-catenin signalling pathway. Br J Cancer. 2022;126(12):1684-1694.

[134]

Babaei G, Aliarab A, Asghari Vostakolaei M, et al. Crosslink between p53 and metastasis: focus on epithelial-mesenchymal transition, cancer stem cell, angiogenesis, autophagy, and anoikis. Mol Biol Rep. 2021;48(11):7545-7557.

[135]

Ganci F, Pulito C, Valsoni S, et al. PI3K inhibitors curtail MYC-dependent mutant p53 gain-of-function in head and neck squamous cell carcinoma. Clin Cancer Res. 2020;26(12):2956-2971.

[136]

Park SH, Jeong S, Kim BR, et al. Activating CCT2 triggers Gli-1 activation during hypoxic condition in colorectal cancer. Oncogene. 2020;39(1):136-150.

[137]

Ruggiero C, Lalli E. Targeting the cytoskeleton against metastatic dissemination. Cancer Metastasis Rev. 2021;40(1):89-140.

[138]

Fife CM, McCarroll JA, Kavallaris M. Movers and shakers: cell cytoskeleton in cancer metastasis. Br J Pharmacol. 2014;171(24):5507-5523.

[139]

Qiu X, He X, Huang Q, et al. Overexpression of CCT8 and its significance for tumor cell proliferation, migration and invasion in glioma. Pathol Res Pract. 2015;211(10):717-725.

[140]

Yang X, Ren H, Shao Y, et al. Chaperonin-containing T‑complex protein 1 subunit 8 promotes cell migration and invasion in human esophageal squamous cell carcinoma by regulating α-actin and β-tubulin expression. Int J Oncol. 2018;52(6):2021-2030.

[141]

Mosca L, Ilari A, Fazi F, Assaraf YG, Colotti G. Taxanes in cancer treatment: activity, chemoresistance and its overcoming. Drug Resist Updat. 2021;54:100742.

[142]

Harker WG, Sikic BI. Multidrug (pleiotropic) resistance in doxorubicin-selected variants of the human sarcoma cell line MES-SA. Cancer Res. 1985;45(9):4091-4096.

[143]

Danni X, Jiangzheng Z, Huamao S, Yinglian P, Changcheng Y, Yanda L. Chaperonin containing TCP1 subunit 3 (CCT3) promotes cisplatin resistance of lung adenocarcinoma cells through targeting the Janus kinase 2/signal transducers and activators of transcription 3 (JAK2/STAT3) pathway. Bioengineered. 2021;12(1):7335-7347.

[144]

Pegtel DM, Gould SJ. Exosomes. Annu Rev Biochem. 2019;88:487-514.

[145]

Chen Y, Kang J, Zhen R, Zhang L, Chen C. A genome-wide CRISPR screen identifies the CCT chaperonin as a critical regulator of vesicle trafficking. Faseb J. 2023;37(2):e22757.

[146]

Hallal S, Russell BP, Wei H, et al. Extracellular vesicles from neurosurgical aspirates identifies chaperonin containing TCP1 subunit 6A as a potential glioblastoma biomarker with prognostic significance. Proteomics. 2019;19(1-2):e1800157.

[147]

Cho HJ, Baek GO, Yoon MG, et al. Overexpressed proteins in HCC cell-derived exosomes, CCT8, and cofilin-1 are potential biomarkers for patients with HCC. Diagnostics (Basel). 2021;11(7):1221.

[148]

Raggi C, Taddei ML, Rae C, Braconi C, Marra F. Metabolic reprogramming in cholangiocarcinoma. J Hepatol. 2022;77(3):849-864.

[149]

Søndergaard JN, Sommerauer C, Atanasoai I, et al. CCT3-LINC00326 axis regulates hepatocarcinogenic lipid metabolism. Gut. 2022;71(10):2081-2092.

[150]

Chen S, Tian Y, Ju A, Li B, Fu Y, Luo Y. Suppression of CCT3 inhibits tumor progression by impairing ATP production and cytoplasmic translation in lung adenocarcinoma. Int J Mol Sci. 2022;23(7):3983.

[151]

Silver LM, Artzt K, Bennett D. A major testicular cell protein specified by a mouse T/t complex gene. Cell. 1979;17(2):275-284.

[152]

Hu J, Han C, Zhong J, et al. Dynamic network biomarker of pre-exhausted CD8(+) T cells contributed to T cell exhaustion in colorectal cancer. Front Immunol. 2021;12:691142.

[153]

Han T, Wang X, Shi S, et al. Cancer cell resistance to IFNγ can occur via enhanced double-strand break repair pathway activity. Cancer Immunol Res. 2023;11(3):381-398.

[154]

Guest ST, Kratche ZR, Bollig-Fischer A, Haddad R, Ethier SP. Two members of the TRiC chaperonin complex, CCT2 and TCP1 are essential for survival of breast cancer cells and are linked to driving oncogenes. Exp Cell Res. 2015;332(2):223-235.

[155]

Bassiouni R, Nemec KN, Iketani A, et al. Chaperonin containing TCP-1 protein level in breast cancer cells predicts therapeutic application of a cytotoxic peptide. Clin Cancer Res. 2016;22(17):4366-4379.

[156]

Showalter AE, Martini AC, Nierenberg D, et al. Investigating chaperonin-containing TCP-1 subunit 2 as an essential component of the chaperonin complex for tumorigenesis. Sci Rep. 2020;10(1):798.

[157]

Zou Q, Yang Z-L, Yuan Y, et al. Clinicopathological features and CCT2 and PDIA2 expression in gallbladder squamous/adenosquamous carcinoma and gallbladder adenocarcinoma. World J Surg Oncol. 2013;11:143.

[158]

Coghlin C, Carpenter B, Dundas S, Lawrie L, Telfer C, Murray G. Characterization and over-expression of chaperonin t-complex proteins in colorectal cancer. J Pathol. 2006;210(3):351-357.

[159]

Cui X, Hu ZP, Li Z, Gao PJ, Zhu JY. Overexpression of chaperonin containing TCP1, subunit 3 predicts poor prognosis in hepatocellular carcinoma. World J Gastroenterol. 2015;21(28):8588-8604.

[160]

Xu G, Bu S, Wang X, Zhang H, Ge H. Suppression of CCT3 inhibits the proliferation and migration in breast cancer cells. Cancer Cell Int. 2020;20:218.

[161]

Qu H, Zhu F, Dong H, Hu X, Han M. Upregulation of CCT-3 induces breast cancer cell proliferation through miR-223 competition and Wnt/β-catenin signalling pathway activation. Front Oncol. 2020;10:533176.

[162]

Shi H, Zhang Y, Wang Y, Fang P, Liu Y, Li W. Restraint of chaperonin containing T-complex protein-1 subunit 3 has antitumor roles in non-small cell lung cancer via affection of YAP1. Toxicol Appl Pharmacol. 2022;439:115926.

[163]

Wang K, He J, Tu C, et al. Upregulation of CCT3 predicts poor prognosis and promotes cell proliferation via inhibition of ferroptosis and activation of AKT signalling in lung adenocarcinoma. BMC Mol Cell Biol. 2022;23(1):25.

[164]

Shi Y, Deng X, Zhan Q, et al. A prospective proteomic-based study for identifying potential biomarkers for the diagnosis of cholangiocarcinoma. J Gastrointest Surg. 2013;17(9):1584-1591.

[165]

Dou L, Zhang X. Upregulation of CCT3 promotes cervical cancer progression through FN1. Mol Med Rep. 2021;24(6):856.

[166]

Wang Y, Liu P, Zhang Z, Wang J, Cheng Z, Fan C. Identification of CCT3 as a prognostic factor and correlates with cell survival and invasion of head and neck squamous-cell carcinoma. Biosci Rep. 2021;41(10):BSR20211137.

[167]

Liu W, Zhang X, Chen C, et al. Suppression of CCT3 inhibits melanoma cell proliferation by downregulating CDK1 expression. J Cancer. 2022;13(6):1958-1971.

[168]

Qian T, Cui L, Liu Y, et al. High expression of chaperonin-containing TCP1 subunit 3 may induce dismal prognosis in multiple myeloma. Pharmacogenomics J. 2020;20(4):563-573.

[169]

Temiz E, Koyuncu İ, Sahin E. CCT3 suppression prompts apoptotic machinery through oxidative stress and energy deprivation in breast and prostate cancers. Free Radic Biol Med. 2021;165:88-99.

[170]

Li F, Liu C-S, Wu P, et al. CCT4 suppression inhibits tumor growth in hepatocellular carcinoma by interacting with Cdc20. Chin Med J (Engl). 2021;134(22):2721-2729.

[171]

Cai Y, Wu D, Zhan L. CCT6A expression in hepatocellular carcinoma and its correlation with clinical characteristics, liver function indexes, tumor markers and prognosis. Clin Res Hepatol Gastroenterol. 2022;46(3):101796.

[172]

Yang X, Tong Y, Ye W, Chen L. HOXB2 increases the proliferation and invasiveness of colon cancer cells through the upregulation of CCT6A. Mol Med Rep. 2022;25(5):174.

[173]

Zhang T, Shi W, Tian Ke, Kong Y. Chaperonin containing t-complex polypeptide 1 subunit 6A correlates with lymph node metastasis, abnormal carcinoembryonic antigen and poor survival profiles in non-small cell lung carcinoma. World J Surg Oncol. 2020;18(1):156.

[174]

He T, Yu D, Wang Z, Guo C, Chang Y, Wang D. Chaperonin-containing tailless complex polypeptide 1 subunit 6A links with aggravating tumor features and disease-free survival in surgical gastric cancer patients: a long-term follow-up study. Clin Res Hepatol Gastroenterol. 2022;46(7):101913.

[175]

Hu Y, Fu P, Zhao H, et al. Chaperonin-containing tailless complex polypeptide 1 subunit 6A correlates with increased World Health Organization grade, less isocitrate dehydrogenase mutation, and deteriorative survival of astrocytoma patients. J Clin Lab Anal. 2021;35(9):e23917.

[176]

Ma J, Yang L, Feng H, et al. CCT6A may act as a potential biomarker reflecting tumor size, lymphatic metastasis, FIGO stage, and prognosis in cervical cancer patients. J Clin Lab Anal. 2021;35(8):e23793.

[177]

Tanic N, Brkic G, Dimitrijevic B, et al. Identification of differentially expressed mRNA transcripts in drug-resistant versus parental human melanoma cell lines. Anticancer Res. 2006;26(3a):2137-2142.

[178]

Wei P-L, Huang C-Y, Tai C-J, et al. Glucose-regulated protein 94 mediates metastasis by CCT8 and the JNK pathway in hepatocellular carcinoma. Tumour Biol. 2016;37(6):8219-8227.

RIGHTS & PERMISSIONS

2024 The Authors. Clinical and Translational Medicine published by John Wiley & Sons Australia, Ltd on behalf of Shanghai Institute of Clinical Bioinformatics.

AI Summary AI Mindmap
PDF

223

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/