Spatial transcriptomics reveals heterogeneity of histological subtypes between lepidic and acinar lung adenocarcinoma

Linshan Xie , Hui Kong , Jinjie Yu , Mengting Sun , Shaohua Lu , Yong Zhang , Jie Hu , Fang Du , Qiuyu Lian , Hongyi Xin , Jian Zhou , Xiangdong Wang , Charles A. Powell , Fred R. Hirsch , Chunxue Bai , Yuanlin Song , Jun Yin , Dawei Yang

Clinical and Translational Medicine ›› 2024, Vol. 14 ›› Issue (2) : e1573

PDF
Clinical and Translational Medicine ›› 2024, Vol. 14 ›› Issue (2) : e1573 DOI: 10.1002/ctm2.1573
RESEARCH ARTICLE

Spatial transcriptomics reveals heterogeneity of histological subtypes between lepidic and acinar lung adenocarcinoma

Author information +
History +
PDF

Abstract

Background: Patients who possess various histological subtypes of early-stage lung adenocarcinoma (LUAD) have considerably diverse prognoses. The simultaneous existence of several histological subtypes reduces the clinical accuracy of the diagnosis and prognosis of early-stage LUAD due to intratumour intricacy.

Methods: We included 11 postoperative LUAD patients pathologically confirmed to be stage IA. Single-cell RNA sequencing (scRNA-seq) was carried out on matched tumour and normal tissue. Three formalin-fixed and paraffin-embedded cases were randomly selected for 10× Genomics Visium analysis, one of which was analysed by digital spatial profiler (DSP).

Results: Using DSP and 10× Genomics Visium analysis, signature gene profiles for lepidic and acinar histological subtypes were acquired. The percentage of histological subtypes predicted for the patients from samples of 11 LUAD fresh tissues by scRNA-seq showed a degree of concordance with the clinicopathologic findings assessed by visual examination. DSP proteomics and 10× Genomics Visium transcriptomics analyses revealed that a negative correlation (Spearman correlation analysis: r = -.886; p = .033) between the expression levels of CD8 and the expression trend of programmed cell death 1(PD-L1) on tumour endothelial cells. The percentage of CD8+ T cells in the acinar region was lower than in the lepidic region.

Conclusions: These findings illustrate that assessing patient histological subtypes at the single-cell level is feasible. Additionally, tumour endothelial cells that express PD-L1 in stage IA LUAD suppress immune-responsive CD8+ T cells.

Keywords

digital spatial profiler / histological subtypes / lung adenocarcinoma / single-cell RNA sequencing / tumour endothelial cells

Cite this article

Download citation ▾
Linshan Xie, Hui Kong, Jinjie Yu, Mengting Sun, Shaohua Lu, Yong Zhang, Jie Hu, Fang Du, Qiuyu Lian, Hongyi Xin, Jian Zhou, Xiangdong Wang, Charles A. Powell, Fred R. Hirsch, Chunxue Bai, Yuanlin Song, Jun Yin, Dawei Yang. Spatial transcriptomics reveals heterogeneity of histological subtypes between lepidic and acinar lung adenocarcinoma. Clinical and Translational Medicine, 2024, 14(2): e1573 DOI:10.1002/ctm2.1573

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Travis WD, Brambilla E, Noguchi M, et al. International association for the study of lung cancer/American Thoracic Society/European Respiratory Society international multidisciplinary classification of lung adenocarcinoma. J Thorac Oncol. 2011;6(2):244-285.

[2]

Lin G, Li H, Kuang J, et al. Acinar-predominant pattern correlates with poorer prognosis in invasive mucinous adenocarcinoma of the lung. Am J Clin Pathol. 2018;149(5):373-378.

[3]

Hung JJ, Yeh YC, Jeng WJ, et al. Predictive value of the international association for the study of lung cancer/American Thoracic Society/European Respiratory Society classification of lung adenocarcinoma in tumor recurrence and patient survival. J Clin Oncol. 2014;32(22):2357-2364.

[4]

Kim M, Chung YS, Kim KA, et al. Prognostic factors of acinar- or papillary-predominant adenocarcinoma of the lung. Lung Cancer. 2019;137:129-135.

[5]

Moreira AL, Ocampo PSS, Xia Y, Zhong H, et al. A grading system for invasive pulmonary adenocarcinoma: a proposal from the International Association for the Study of Lung Cancer Pathology Committee. J Thorac Oncol. 2020;15(10):1599-1610.

[6]

Yoshizawa A, Motoi N, Riely GJ, et al. Impact of proposed IASLC/ATS/ERS classification of lung adenocarcinoma: prognostic subgroups and implications for further revision of staging based on analysis of 514 stage I cases. Mod Pathol. 2011;24(5):653-664.

[7]

Yoshizawa A, Sumiyoshi S, Sonobe M, et al. Validation of the IASLC/ATS/ERS lung adenocarcinoma classification for prognosis and association with EGFR and KRAS gene mutations: analysis of 440 Japanese patients. J Thorac Oncol. 2013;8(1):52-61.

[8]

Travis WD, Brambilla E, Riely GJ. New pathologic classification of lung cancer: relevance for clinical practice and clinical trials. J Clin Oncol. 2013;31(8):992-1001.

[9]

Caso R, Sanchez-Vega F, Tan KS, et al. The underlying tumor genomics of predominant histologic subtypes in lung adenocarcinoma. J Thorac Oncol. 2020;15(12):1844-1856.

[10]

Akhave N, Zhang J, Bayley E, et al. Immunogenomic profiling of lung adenocarcinoma reveals poorly differentiated tumors are associated with an immunogenic tumor microenvironment. Lung Cancer. 2022;172:19-28.

[11]

Wang Y, Liu B, Min Q, et al. Spatial transcriptomics delineates molecular features and cellular plasticity in lung adenocarcinoma progression. Cell Discov. 2023;9(1):96.

[12]

Wright J, Churg A, Kitaichi M, et al. Reproducibility of visual estimation of lung adenocarcinoma subtype proportions. Mod Pathol. 2019;32(11):1587-1592.

[13]

Warth A, Stenzinger A, von Brünneck AC, et al. Interobserver variability in the application of the novel IASLC/ATS/ERS classification for pulmonary adenocarcinomas. Eur Respir J. 2012;40(5):1221-1227.

[14]

Karasaki T, Moore DA, Veeriah S, et al. Evolutionary characterization of lung adenocarcinoma morphology in TRACERx. Nat Med. 2023;29(4):833-845.

[15]

Tavernari D, Battistello E, Dheilly E, et al. Nongenetic evolution drives lung adenocarcinoma spatial heterogeneity and progression. Cancer Discov. 2021;11(6):1490-1507.

[16]

Zhang J-T, Zhang J, Wang S-R, et al. Spatial downregulation of CD74 signatures may drive invasive component development in part-solid lung adenocarcinoma. iScience. 2023;26(10):107699.

[17]

Garcia J, Hurwitz HI, Sandler AB, et al. Bevacizumab (Avastin®) in cancer treatment: a review of 15 years of clinical experience and future outlook. Cancer Treat Rev. 2020;86:102017.

[18]

Cao Y. Off-tumor target-beneficial site for antiangiogenic cancer therapy?Nat Rev Clin Oncol. 2010;7(10):604-608.

[19]

Yasuda S, Sho M, Yamato I, et al. Simultaneous blockade of programmed death 1 and vascular endothelial growth factor receptor 2 (VEGFR2) induces synergistic anti-tumour effect in vivo. Clin Exp Immunol. 2013;172(3):500-506.

[20]

Tao L, Huang G, Shi S, et al. Bevacizumab improves the antitumor efficacy of adoptive cytokine-induced killer cells therapy in non-small cell lung cancer models. Med Oncol. 2014;31(1):777.

[21]

Zeng Q, Mousa M, Nadukkandy AS, et al. Understanding tumour endothelial cell heterogeneity and function from single-cell omics. Nat Rev Cancer. 2023;23(8):544-564.

[22]

Macosko EZ, Basu A, Satija R, et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell. 2015;161(5):1202-1214.

[23]

Satija R, Farrell JA, Gennert D, et al. Spatial reconstruction of single-cell gene expression data. Nat Biotechnol. 2015;33(5):495-502.

[24]

Kim N, Kim HK, Lee K, et al. Single-cell RNA sequencing demonstrates the molecular and cellular reprogramming of metastatic lung adenocarcinoma. Nat Commun. 2020;11(1):2285.

[25]

Merritt CR, Ong GT, Church SE, et al. Multiplex digital spatial profiling of proteins and RNA in fixed tissue. Nat Biotechnol. 2020;38(5):586-599.

[26]

Song X, Xiong A, Wu F, et al. Spatial multi-omics revealed the impact of tumor ecosystem heterogeneity on immunotherapy efficacy in patients with advanced non-small cell lung cancer treated with bispecific antibody. J Immunother Cancer. 2023;11(2):e006234.

[27]

Ji AL, Rubin AJ, Thrane K, et al. Multimodal analysis of composition and spatial architecture in human squamous cell carcinoma. Cell. 2020;182(2):497-514.e22.

[28]

Der SD, Sykes J, Pintilie M, et al. Validation of a histology-independent prognostic gene signature for early-stage, non-small-cell lung cancer including stage IA patients. J Thorac Oncol. 2014;9(1):59-64.

[29]

Okayama H, Kohno T, Ishii Y, et al. Identification of genes upregulated in ALK-positive and EGFR/KRAS/ALK-negative lung adenocarcinomas. Cancer Res. 2012;72(1):100-111.

[30]

Tang H, Xiao G, Behrens C, et al. A 12-gene set predicts survival benefits from adjuvant chemotherapy in non-small cell lung cancer patients. Clin Cancer Res. 2013;19(6):1577-1586.

[31]

CNCB-NGDC Members and Partners. Database resources of the National Genomics Data Center, China National Center for Bioinformation in 2022. Nucleic Acids Res. 2022;50(D1):D27-D38.

[32]

Shim J, Park J, Abudureyimu G, et al. Comparative spatial transcriptomic and single-cell analyses of human nail units and hair follicles show transcriptional similarities between the onychodermis and follicular dermal papilla. J Invest Dermatol. 2022;142(12):3146-3157.e12.

[33]

Nguyen TT, Lee HS, Burt BM, et al. A lepidic gene signature predicts patient prognosis and sensitivity to immunotherapy in lung adenocarcinoma. Genome Med. 2022;14(1):5.

[34]

Cheng HW, Chen YF, Wong JM, et al. Cancer cells increase endothelial cell tube formation and survival by activating the PI3K/Akt signalling pathway. J Exp Clin Cancer Res. 2017;36(1):27.

[35]

Welner RS, Pelayo R, Kincade PW. Evolving views on the genealogy of B cells. Nat Rev Immunol. 2008;8(2):95-106.

[36]

Uchiba M, Okajima K, Oike Y, et al. Activated protein C induces endothelial cell proliferation by mitogen-activated protein kinase activation in vitro and angiogenesis in vivo. Circ Res. 2004;95(1):34-41.

[37]

Zhuo H, Zhao Y, Cheng X, et al. Tumor endothelial cell-derived cadherin-2 promotes angiogenesis and has prognostic significance for lung adenocarcinoma. Mol Cancer. 2019;18(1):34.

[38]

Strilic B, Yang L, Albarrán-Juárez J, et al. Tumour-cell-induced endothelial cell necroptosis via death receptor 6 promotes metastasis. Nature. 2016;536(7615):215-218.

[39]

Blom B, Spits H. Development of human lymphoid cells. Annu Rev Immunol. 2006;24:287-320.

[40]

Mantovani A, Cassatella MA, Costantini C, et al. Neutrophils in the activation and regulation of innate and adaptive immunity. Nat Rev Immunol. 2011;11(8):519-531.

[41]

Murray PJ, Wyn TA. Protective and pathogenic functions of macrophage subsets. Nat Rev Immunol. 2011;11(11):723-737.

[42]

Zhu J, Fan Y, Xiong Y, et al. Delineating the dynamic evolution from preneoplasia to invasive lung adenocarcinoma by integrating single-cell RNA sequencing and spatial transcriptomics. Exp Mol Med. 2022;54(11):2060-2076.

[43]

Sato R, Imamura K, Semba T, et al. TGFβ signaling activated by cancer-associated fibroblasts determines the histological signature of lung adenocarcinoma. Cancer Res. 2021;81(18):4751-4765.

[44]

Tone M, Tahara S, Nojima S, et al. HTR3A is correlated with unfavorable histology and promotes proliferation through ERK phosphorylation in lung adenocarcinoma. Cancer Sci. 2020;111(10):3953-3961.

[45]

Li Z, Li F, Pan C, et al. Tumor cell proliferation (Ki-67) expression and its prognostic significance in histological subtypes of lung adenocarcinoma. Lung Cancer. 2021;154:69-75.

[46]

Chang SH, Mezzano-Robinson V, Zhou H, et al. Digital spatial profiling to predict recurrence in grade 3 stage I lung adenocarcinoma. J Thorac Cardiovasc Surg. 2023.

[47]

Lambrechts D, Wauters E, Boeckx B, et al. Phenotype molding of stromal cells in the lung tumor microenvironment. Nat Med. 2018;24(8):1277-1289.

[48]

Li Y, Li X, Chen H, et al. Single-cell RNA sequencing reveals the multi-cellular ecosystem in different radiological components of pulmonary part-solid nodules. Clin Transl Med. 2022;12(2):e723.

[49]

Yi M, Zheng X, Niu M, et al. Combination strategies with PD-1/PD-L1 blockade: current advances and future directions. Mol Cancer. 2022;21(1):28.

[50]

Grabie N, Gotsman I, DaCosta R, et al. Endothelial programmed death-1 ligand 1 (PD-L1) regulates CD8+ T-cell mediated injury in the heart. Circulation. 2007;116(18):2062-2071.

[51]

Caso R, Sanchez-Vega F, Tan KS, et al. Prognostic factors of acinar- or papillary-predominant adenocarcinoma of the lung. Lung Cancer. 2019;137:129-135.

[52]

Wu M, Huang Q, Xie Y, et al. Improvement of the anticancer efficacy of PD-1/PD-L1 blockade via combination therapy and PD-L1 regulation. J Hematol Oncol. 2022;15(1):24.

[53]

Lee WS, Yang H, Chon HJ, et al. Combination of anti-angiogenic therapy and immune checkpoint blockade normalizes vascular-immune crosstalk to potentiate cancer immunity. Exp Mol Med. 2020;52(9):1475-1485.

[54]

Saw SPL, Tan DSW. Co-targeting the VEGF axis and immune checkpoints in NSCLC: back to the future. Ann Oncol. 2021;32(9):1075-1076.

[55]

Palikuqi B, Nguyen DT, Li G, et al. Adaptable haemodynamic endothelial cells for organogenesis and tumorigenesis. Nature. 2020;585(7825):426-432.

[56]

Vitale I, Shema E, Loi S, et al. Intratumoral heterogeneity in cancer progression and response to immunotherapy. Nat Med. 2021;27(2):212-224.

[57]

Cabrita R, Lauss M, Sanna A, et al. Tertiary lymphoid structures improve immunotherapy and survival in melanoma. Nature. 2020;577(7791):561-565.

[58]

Chen T, Chen X, Zhang S, et al. The genome sequence archive family: toward explosive data growth and diverse data types. Genomics Proteomics Bioinform. 2021;19(4):578-583.

RIGHTS & PERMISSIONS

2024 The Authors. Clinical and Translational Medicine published by John Wiley & Sons Australia, Ltd on behalf of Shanghai Institute of Clinical Bioinformatics.

AI Summary AI Mindmap
PDF

194

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/