Novel insights on genetics and epigenetics as clinical targets for paediatric astrocytoma

Dona A. Johns , Richard J. Williams , Craig M. Smith , Pavani P. Nadaminti , Rasika M. Samarasinghe

Clinical and Translational Medicine ›› 2024, Vol. 14 ›› Issue (2) : e1560

PDF
Clinical and Translational Medicine ›› 2024, Vol. 14 ›› Issue (2) :e1560 DOI: 10.1002/ctm2.1560
REVIEW

Novel insights on genetics and epigenetics as clinical targets for paediatric astrocytoma

Author information +
History +
PDF

Abstract

Paediatric and adult astrocytomas are notably different, where clinical treatments used for adults are not as effective on children with the same form of cancer and these treatments lead to adverse long-term health concerns. Integrative omics-based studies have shown the pathology and fundamental molecular characteristics differ significantly and cannot be extrapolated from the more widely studied adult disease. Recent clinical advances in our understanding of paediatric astrocytomas, with the aid of next-generation sequencing and epigenome-wide profiling, have led to the identification of key canonical mutations that vary based on the tumour location and age of onset. These driver mutations, in particular the identification of the recurrent histone H3 mutations in high-grade tumours, have confirmed the important role epigenetic dysregulations play in cancer progression. This review summarises the current updates of the classification, epidemiology, pathogenesis and clinical management of paediatric astrocytoma based on their grades and the ongoing clinical trials. It also provides novel insights on genetic and epigenetic alterations as diagnostic biomarkers, highlighting the potential of targeting these pathways as therapeutics for this devastating childhood cancer.

Keywords

epigenetics / gliomas / methylation / paediatric astrocytoma

Cite this article

Download citation ▾
Dona A. Johns, Richard J. Williams, Craig M. Smith, Pavani P. Nadaminti, Rasika M. Samarasinghe. Novel insights on genetics and epigenetics as clinical targets for paediatric astrocytoma. Clinical and Translational Medicine, 2024, 14(2): e1560 DOI:10.1002/ctm2.1560

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ostrom QT, Price M, Ryan K, et al. CBTRUS Statistical Report: pediatric brain tumor foundation childhood and adolescent primary brain and other central nervous system tumors diagnosed in the United States in 2014-2018. Neuro Oncol. 2022;24(3):iii1-iii38.

[2]

Louis DN, Perry A, Reifenberger G, et al. The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol. 2016;131(6):803-820.

[3]

Abedalthagafi M, Phillips JJ, Kim GE, et al. The alternative lengthening of telomere phenotype is significantly associated with loss of ATRX expression in high-grade pediatric and adult astrocytomas: a multi-institutional study of 214 astrocytomas. Modern Pathol. 2013;26(11):1425-1432.

[4]

Gareton A, Tauziède-Espariat A, Dangouloff-Ros V, et al. The histomolecular criteria established for adult anaplastic pilocytic astrocytoma are not applicable to the pediatric population. Acta Neuropathol. 2020;139(2):287-303.

[5]

Gajjar A, Bowers DC, Karajannis MA, Leary S, Witt H, Gottardo NG. Pediatric brain tumors: innovative genomic information is transforming the diagnostic and clinical landscape. J Clin Oncol. 2015;33(27):2986-2998.

[6]

Louis DN, Perry A, Wesseling P, et al. The 2021 WHO classification of tumors of the central nervous system: a summary. Neuro Oncol. 2021;23(8):1231-1251.

[7]

Miller KD, Ostrom QT, Kruchko C, et al. Brain and other central nervous system tumor statistics, 2021. CA Cancer J Clin. 2021;71(5):381-406.

[8]

Johnson KJ, Cullen J, Barnholtz-Sloan JS, et al. Childhood brain tumor epidemiology: a brain tumor epidemiology consortium review. Cancer Epidemiol Biomarkers Prev. 2014;23(12):2716-2736.

[9]

Osborn AG, Louis DN, Poussaint TY, Linscott LL, Salzman KL. The 2021 World Health Organization classification of tumors of the central nervous system: what neuroradiologists need to know. Am J Neuroradiol. 2022;43(7):928-937.

[10]

Gielen GH, Baugh JN, Van Vuurden DG, et al. Pediatric high-grade gliomas and the WHO CNS Tumor Classification—perspectives of pediatric neuro-oncologists and neuropathologists in light of recent updates. Neurooncol Adv. 2022;4(1):vdac077.

[11]

Basheer F, Dhar P, Samarasinghe RM. Zebrafish models of paediatric brain tumours. Int J Mol Sci. 2022;23(17):9920.

[12]

Ostrom QT, Price M, Neff C, et al. CBTRUS Statistical Report: primary brain and other central nervous system tumors diagnosed in the United States in 2015-2019. Neuro Oncol. 2022;24(suppl_5):v1-v95.

[13]

Kaatsch P. Epidemiology of childhood cancer. Cancer Treat Rev. 2010;36(4):277-285.

[14]

Ostrom QT, Price M, Neff C, et al. CBTRUS Statistical Report: primary brain and other central nervous system tumors diagnosed in the United States in 2016—2020. Neuro Oncol. 2023;25(suppl_4):iv1-iv99.

[15]

Price M, Ryan K, Shoaf ML, et al. Childhood, adolescent, and adult primary brain and central nervous system tumor statistics for practicing healthcare providers in neuro-oncology, CBTRUS 2015-2019. Neurooncol Pract. 2023;11(1):5-25.

[16]

Bornhorst M, Frappaz D, Packer RJ. Pilocytic astrocytomas. Handb Clin Neurol. 2016;134:329-344.

[17]

Collins VP, Jones DTW, Giannini C. Pilocytic astrocytoma: pathology, molecular mechanisms and markers. Acta Neuropathol. 2015;129(6):775-788.

[18]

Mei GH, Liu XX, Zhou P, Shen M. Clinical and imaging features of subependymal giant cell astrocytoma: report of 20 cases. Chin Neurosurg J. 2017;3(1).

[19]

Kotulska K, Borkowska J, Roszkowski M, et al. Surgical treatment of subependymal giant cell astrocytoma in tuberous sclerosis complex patients. Pediatr Neurol. 2014;50(4):307-312.

[20]

Ryall S, Tabori U, Hawkins C. Pediatric low-grade glioma in the era of molecular diagnostics. Acta Neuropathol Commun. 2020;8(1):30.

[21]

Bouffet E. Common brain tumours in children: diagnosis and treatment. Paediatr Drugs. 2000;2(1):57-66.

[22]

Fabbri VP, Caporalini C, Asioli S, Buccoliero A. Paediatric-type diffuse low-grade gliomas: a clinically and biologically distinct group of tumours with a favourable outcome. Pathologica. 2022;114(6):410-421.

[23]

Bonfield CM, Steinbok P. Pediatric cerebellar astrocytoma: a review. Child's Nervous System. 2015;31(10):1677-1685.

[24]

Collins KL, Pollack IF. Pediatric low-grade gliomas. Cancers (Basel). 2020;12(5):1152.

[25]

Ryall S, Tabori U, Hawkins C. A comprehensive review of paediatric low-grade diffuse glioma: pathology, molecular genetics and treatment. Brain Tumor Pathol. 2017;34(2):51-61.

[26]

Shaikh N, Brahmbhatt N, Kruser TJ, et al. Pleomorphic xanthoastrocytoma: a brief review. CNS Oncol. 2019;8(3):CNS39.

[27]

Guss ZD, Moningi S, Jallo GI, Cohen KJ, Wharam MD, Terezakis SA. Management of pediatric spinal cord astrocytomas: outcomes with adjuvant radiation. Int J Radiat Oncol Biol Phys. 2013;85(5):1307-1311.

[28]

Weller M, Watts C, Reardon DA, Mehta MP. Glioblastoma. Oncol CNS Tumors. 2019:237-247.

[29]

Cherlow JM, Shaw DWW, Margraf LR, et al. Conformal radiation therapy for pediatric patients with low-grade glioma: results from the Children's Oncology Group Phase 2 Study ACNS0221. Int J Radiat Oncol Biol Phys. 2019;103(4):861-868.

[30]

Kidd EA, Mansur DB, Leonard JR, Michalski JM, Simpson JR, Perry A. The efficacy of radiation therapy in the management of grade I astrocytomas. J Neurooncol. 2006;76(1):55-58.

[31]

Scholtyssek F, Zwiener I, Schlamann A, et al. Reirradiation in progressive high-grade gliomas: outcome, role of concurrent chemotherapy, prognostic factors and validation of a new prognostic score with an independent patient cohort. Radiat Oncol. 2013;8(1):161.

[32]

Holmes JA, Chera BS, Brenner DJ, et al. Estimating the excess lifetime risk of radiation induced secondary malignancy (SMN) in pediatric patients treated with craniospinal irradiation (CSI): conventional radiation therapy versus helical intensity modulated radiation therapy. Pract Radiat Oncol. 2017;7(1):35-41.

[33]

Wu J, Neale N, Huang Y, et al. Comparison of adjuvant radiation therapy alone and chemotherapy alone in surgically resected low-grade gliomas: survival analyses of 2253 cases from the National Cancer Data Base. World Neurosurg. 2018;112:e812-e822.

[34]

Wu J, Kim C, Bai HX, et al. Comparison of radiation therapy alone and chemotherapy alone for low-grade gliomas without surgical resection. World Neurosurg. 2019;122:e108-e120.

[35]

Dodgshun AJ, Maixner WJ, Heath JA, Sullivan MJ, Hansford JR. Single agent carboplatin for pediatric low-grade glioma: a retrospective analysis shows equivalent efficacy to multiagent chemotherapy. Int J Cancer. 2016;138(2):481-488.

[36]

Prados MD, Edwards MSB, Rabbitt J, Lamborn K, Davis RL, Levin VA. Treatment of pediatric low-grade gliomas with a nitrosourea-based multiagent chemotherapy regimen. J Neurooncol. 1997;32(3):235-241.

[37]

Ater JL, Zhou T, Holmes E, et al. Randomized study of two chemotherapy regimens for treatment of low-grade glioma in young children: a report from the Children's Oncology Group. J Clin Oncol. 2012;30(21):2641-2647.

[38]

Perry JR, Brown MT, Gockerman JP. Acute leukemia following treatment of malignant glioma. J Neurooncol. 1998;40(1):39-46.

[39]

Mora J, Perez-Jaume S, Cruz O. Treatment of childhood astrocytomas with irinotecan and cisplatin. Clin Transl Oncol. 2018;20(4):500-507.

[40]

Nicholson HS, Kretschmar CS, Krailo M, et al. Phase 2 study of temozolomide in children and adolescents with recurrent central nervous system tumors: a report from the Children's Oncology Group. Cancer. 2007;110(7):1542-1550.

[41]

Braunstein S, Raleigh D, Bindra R, Mueller S, Haas-Kogan D. Pediatric high-grade glioma: current molecular landscape and therapeutic approaches. J Neurooncol. 2017;134(3):541-549.

[42]

Khani P, Nasri F, Khani Chamani F, et al. Genetic and epigenetic contribution to astrocytic gliomas pathogenesis. J Neurochem. 2019;148(2):188-203.

[43]

Jones C, Karajannis MA, Jones DTW, et al. Pediatric high-grade glioma: biologically and clinically in need of new thinking. Neuro Oncol. 2017;19(2):153-161.

[44]

Westphal M, Lamszus K. The neurobiology of gliomas: from cell biology to the development of therapeutic approaches. Nat Rev Neurosci. 2011;12(9):495-508.

[45]

Kanti DK, Kumar R. Pediatric glioblastoma. Glioblastoma. Brisbane: Codon Publications; 2017.

[46]

Resende LL, Alves CAPF. Imaging of brain tumors in children: the basics—a narrative review. Transl Pediatr. 2021;10(4):1138-1168.

[47]

Aggarwal P, Luo W, Pehlivan KC, et al. Pediatric versus adult high grade glioma: immunotherapeutic and genomic considerations. Front Immunol. 2022;13:1038096.

[48]

Fangusaro J. Pediatric high grade glioma: a review and update on tumor clinical characteristics and biology. Front Oncol. 2012;2:105.

[49]

Bailey CP, Figueroa M, Mohiuddin S, Zaky W, Chandra J. Cutting edge therapeutic insights derived from molecular biology of pediatric high-grade glioma and diffuse intrinsic pontine glioma (DIPG). Bioengineering. 2018;5(4):88.

[50]

Fangusaro J, Warren KE. Unclear standard of care for pediatric high grade glioma patients. J Neurooncol. 2013;113(2):341-342.

[51]

Rizzo D, Ruggiero A, Martini M, Rizzo V, Maurizi P, Riccardi R. Molecular biology in pediatric high-grade glioma: impact on prognosis and treatment. Biomed Res Int. 2015;2015:215135.

[52]

Campbell JW, Pollack IF, Martinez AJ, Shultz B. High-grade astrocytomas in children: radiologically complete resection is associated with an excellent long-term prognosis. Neurosurgery. 1996;38(2):258-264.

[53]

Nikitović M, Stanić D, Pekmezović T, et al. Pediatric glioblastoma: a single institution experience. Child's Nervous System. 2016;32(1):97-103.

[54]

Wisoff JH, Boyett JM, Berger MS, et al. Current neurosurgical management and the impact of the extent of resection in the treatment of malignant gliomas of childhood: a report of the Children's Cancer Group Trial No. CCG-945. J Neurosurg. 1998;89(1):52-59.

[55]

Adams H, Adams HHH, Jackson C, Rincon-Torroella J, Jallo GI, Quiñones-Hinojosa A. Evaluating extent of resection in pediatric glioblastoma: a multiple propensity score-adjusted population-based analysis. Child's Nervous System. 2016;32(3):493-503.

[56]

Willman M, Willman J, Figg J, et al. Update for astrocytomas: medical and surgical management considerations. Explor Neurosci. 2023;2:1-26.

[57]

Glenn CA, Baker CM, Conner AK, et al. An examination of the role of supramaximal resection of temporal lobe glioblastoma multiforme. World Neurosurg. 2018;114:e747-e755.

[58]

Wach J, Vychopen M, Kühnapfel A, Seidel C, Güresir E. A systematic review and meta-analysis of supramarginal resection versus gross total resection in glioblastoma: can we enhance progression-free survival time and preserve postoperative safety?Cancers (Basel). 2023;15(6):1772.

[59]

Roh TH, Kim SH. Supramaximal resection for glioblastoma: redefining the extent of resection criteria and its impact on survival. Brain Tumor Res Treat. 2023;11(3):166-172.

[60]

Gallitto M, Lazarev S, Wasserman I, et al. Role of radiation therapy in the management of diffuse intrinsic pontine glioma: a systematic review. Adv Radiat Oncol. 2019;4(3):520-531.

[61]

Janssens GO, Jansen MH, Lauwers SJ, et al. Hypofractionation vs conventional radiation therapy for newly diagnosed diffuse intrinsic pontine glioma: a matched-cohort analysis. Int J Radiat Oncol Biol Phys. 2013;85(2):315-320.

[62]

Lee NY, Lu JJ. Target Volume Delineation and Field Setup. A Practical Guide for Conformal and Intensity-Modulated Radiation Therapy. Springer; 2013.

[63]

Terezakis SA, Macdonald SM. Target Volume Delineation for Pediatric Cancers. Vol D. Springer; 2019.

[64]

Finlay JL, Boyett JM, Yates AJ, et al. Randomized phase III trial in childhood high-grade astrocytoma comparing vincristine, lomustine, and prednisone with the eight-drugs-in-1-day regimen. J Clin Oncol. 1995;13(1):112-123.

[65]

Damodharan S, Lara-Velazquez M, Williamsen BC, Helgager J, Dey M. Diffuse intrinsic pontine glioma: molecular landscape, evolving treatment strategies and emerging clinical trials. J Pers Med. 2022;12(5):840.

[66]

Geyer JR, Finlay JL, Boyett JM, et al. Survival of infants with malignant astrocytomas. A report from the Childrens Cancer Group. Cancer. 1995;75(4):1045-1050.

[67]

Narayana A, Kunnakkat S, Chacko-Mathew J, et al. Bevacizumab in recurrent high-grade pediatric gliomas. Neuro Oncol. 2010;12(9):985-990.

[68]

Parekh C, Jubran R, Erdreich-Epstein A, et al. Treatment of children with recurrent high grade gliomas with a bevacizumab containing regimen. J Neurooncol. 2011;103(3):673-680.

[69]

Cohen KJ, Pollack IF, Zhou T, et al. Temozolomide in the treatment of high-grade gliomas in children: a report from the Children's Oncology Group. Neuro Oncol. 2011;13(3):317-323.

[70]

Fineberg R, Zahedi S, Eguchi M, Hart M, Cockburn M, Green AL. Population-based analysis of demographic and socioeconomic disparities in pediatric CNS cancer survival in the United States. Sci Rep. 2020;10(1):4588.

[71]

Chalfant V, Riveros C, Bradfield SM, Stec AA. Impact of social disparities on 10 year survival rates in paediatric cancers: a cohort study. Lancet Reg Health Am. 2023;20:100454.

[72]

Urhie O, Turner R, Lucke-Wold B, et al. Glioblastoma survival outcomes at a tertiary hospital in Appalachia: factors impacting the survival of patients following implementation of the stupp protocol. World Neurosurg. 2018;115:e59-e66.

[73]

de Blank P, Fouladi M, Huse JT. Molecular markers and targeted therapy in pediatric low-grade glioma. J Neurooncol. 2020;150(1):5-15.

[74]

Kline CN, Joseph NM, Grenert JP, et al. Targeted next-generation sequencing of pediatric neuro-oncology patients improves diagnosis, identifies pathogenic germline mutations, and directs targeted therapy. Neuro Oncol. 2017;19(5):699-709.

[75]

Korshunov A, Ryzhova M, Hovestadt V, et al. Integrated analysis of pediatric glioblastoma reveals a subset of biologically favorable tumors with associated molecular prognostic markers. Acta Neuropathol. 2015;129(5):669-678.

[76]

Paugh BS, Qu C, Jones C, et al. Integrated molecular genetic profiling of pediatric high-grade gliomas reveals key differences with the adult disease. J Clin Oncol. 2010;28(18):3061-3068.

[77]

Curry RN, Glasgow SM. The role of neurodevelopmental pathways in brain tumors. Front Cell Dev Biol. 2021;9:659055.

[78]

Hartmann C, Meyer J, Balss J, et al. Type and frequency of IDH1 and IDH2 mutations are related to astrocytic and oligodendroglial differentiation and age: a study of 1,010 diffuse gliomas. Acta Neuropathol. 2009;118(4):469-474.

[79]

Yan H, Parsons DW, Jin G, et al. IDH1 and IDH2 mutations in gliomas. N Engl J Med. 2009;360(8):765-773.

[80]

Cohen AL, Holmen SL, Colman H. IDH1 and IDH2 mutations in gliomas. Curr Neurol Neurosci Rep. 2013;13(5):345.

[81]

Nakamura M, Shimada K, Ishida E, et al. Molecular pathogenesis of pediatric astrocytic tumors. Neuro Oncol. 2007;9(2):113-123.

[82]

Wasson JC, Saylors RL, Zeltzer P, et al. Oncogene amplification in pediatric brain tumors. Cancer Res. 1990;50(10):2987-2990.

[83]

Brennan CW, Verhaak RGW, McKenna A, et al. The somatic genomic landscape of glioblastoma. Cell. 2013;155(2):462-477.

[84]

Buchwald ZS, Tian S, Rossi M, et al. Genomic copy number variation correlates with survival outcomes in WHO grade IV glioma. Sci Rep. 2020;10(1):7355.

[85]

Cohen A, Sato M, Aldape K, et al. DNA copy number analysis of Grade II-III and Grade IV gliomas reveals differences in molecular ontogeny including chromothripsis associated with IDH mutation status. Acta Neuropathol Commun. 2015;3:34.

[86]

Gerstung M, Jolly C, Leshchiner I, et al. The evolutionary history of 2,658 cancers. Nature. 2020;578(7793):122-128.

[87]

Mirchia K, Sathe AA, Walker JM, et al. Total copy number variation as a prognostic factor in adult astrocytoma subtypes. Acta Neuropathol Commun. 2019;7(1):92.

[88]

Rickert CH, Stäter R, Kaatsch P, et al. Pediatric high-grade astrocytomas show chromosomal imbalances distinct from adult cases. Am J Pathol. 2001;158(4):1525-1532.

[89]

Ülgen E, Karacan S, Gerlevik U, et al. Mutations and copy number alterations in IDH wild-type glioblastomas are shaped by different oncogenic mechanisms. Biomedicines. 2020;8(12):574.

[90]

Ross JS, Wang K, Chmielecki J, et al. The distribution of BRAF gene fusions in solid tumors and response to targeted therapy. Int J Cancer. 2016;138(4):881-890.

[91]

Jones DTW, Kocialkowski S, Liu L, et al. Tandem duplication producing a novel oncogenic BRAF fusion gene defines the majority of pilocytic astrocytomas. Cancer Res. 2008;68(21):8673-8677.

[92]

Zhang J, Wu G, Miller CP, et al. Whole-genome sequencing identifies genetic alterations in pediatric low-grade gliomas. Nat Genet. 2013;45(6):602-612.

[93]

Kieran MW, Geoerger B, Dunkel IJ, et al. A phase I and pharmacokinetic study of oral dabrafenib in children and adolescent patients with recurrent or refractory BRAF V600 mutation-positive solid tumors. Clin Cancer Res. 2019;25(24):7294-7302.

[94]

Nicolaides T, Nazemi KJ, Crawford J, et al. Phase I study of vemurafenib in children with recurrent or progressive BRAFV600E mutant brain tumors: Pacific Pediatric Neuro-Oncology Consortium study (PNOC-002). Oncotarget. 2020;11(21):1942-1952.

[95]

Hargrave DR, Bouffet E, Tabori U, et al. Efficacy and safety of dabrafenib in pediatric patients with BRAF V600 mutation-positive relapsed or refractory low-grade glioma: results from a phase I/IIa study. Clin Cancer Res. 2019;25(24):7303-7311.

[96]

Bouffet E, Geoerger B, Moertel C, et al. Efficacy and safety of trametinib monotherapy or in combination with dabrafenib in pediatric BRAF V600-mutant low-grade glioma. J Clin Oncol. 2023;41(3):664-674.

[97]

Hargrave DR, Terashima K, Hara J, et al. Phase II trial of dabrafenib plus trametinib in relapsed/refractory BRAF V600-mutant pediatric high-grade glioma. J Clin Oncol. 2023;41(33):5174-5183.

[98]

Sievert AJ, Lang SS, Boucher KL, et al. Paradoxical activation and RAF inhibitor resistance of BRAF protein kinase fusions characterizing pediatric astrocytomas. Proc Natl Acad Sci U S A. 2013;110(15):5957-5962.

[99]

Koumaki K, Kontogianni G, Kosmidou V, et al. BRAF paradox breakers PLX8394, PLX7904 are more effective against BRAFV600Ε CRC cells compared with the BRAF inhibitor PLX4720 and shown by detailed pathway analysis. Biochim Biophys Acta Mol Basis Dis. 2021;1867(4):166061.

[100]

Fangusaro J, Onar-Thomas A, Young Poussaint T, et al. Selumetinib in paediatric patients with BRAF-aberrant or neurofibromatosis type 1-associated recurrent, refractory, or progressive low-grade glioma: a multicentre, phase 2 trial. Lancet Oncol. 2019;20(7):1011-1022.

[101]

Doz F, Van Tilburg CM, Geoerger B, et al. Efficacy and safety of larotrectinib in TRK fusion-positive primary central nervous system tumors. Neuro Oncol. 2022;24(6):997-1007.

[102]

Drilon A, Laetsch TW, Kummar S, et al. Efficacy of larotrectinib in TRK fusion-positive cancers in adults and children. N Engl J Med. 2018;378(8):731-739.

[103]

Desai AV, Robinson GW, Gauvain K, et al. Entrectinib in children and young adults with solid or primary CNS tumors harboring NTRK, ROS1, or ALK aberrations (STARTRK-NG). Neuro Oncol. 2022;24(10):1776-1789.

[104]

Schwartzentruber J, Korshunov A, Liu XY, et al. Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature. 2012;482(7384):226-231.

[105]

Sturm D, Witt H, Hovestadt V, et al. Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. Cancer Cell. 2012;22(4):425-437.

[106]

MacKay A, Burford A, Carvalho D, et al. Integrated molecular meta-analysis of 1,000 pediatric high-grade and diffuse intrinsic pontine glioma. Cancer Cell. 2017;32(4):520-537.e5.

[107]

Rong L, Li N, Zhang Z. Emerging therapies for glioblastoma: current state and future directions. J Exp Clin Cancer Res. 2022;41(1):142.

[108]

Gururangan S, Chi SN, Poussaint TY, et al. Lack of efficacy of bevacizumab plus irinotecan in children with recurrent malignant glioma and diffuse brainstem glioma: a pediatric brain tumor consortium study. J Clin Oncol. 2010;28(18):3069-3075.

[109]

Nepali K, Liou JP. Recent developments in epigenetic cancer therapeutics: clinical advancement and emerging trends. J Biomed Sci. 2021;28(1):27.

[110]

Nagarajan RP, Costello JF. Molecular epigenetics and genetics in neuro-oncology. Neurotherapeutics. 2009;6(3):436-446.

[111]

Lu Y, Chan YT, Tan HY, Li S, Wang N, Feng Y. Epigenetic regulation in human cancer: the potential role of epi-drug in cancer therapy. Mol Cancer. 2020;19(1):79.

[112]

Capper D, Jones DTW, Sill M, et al. DNA methylation-based classification of central nervous system tumours. Nature. 2018;555(7697):469-474.

[113]

Zang L, Kondengaden SM, Che F, Wang L, Heng X. Potential epigenetic-based therapeutic targets for glioma. Front Mol Neurosci. 2018;11:408.

[114]

Maury E, Hashizume R. Epigenetic modification in chromatin machinery and its deregulation in pediatric brain tumors: insight into epigenetic therapies. Epigenetics. 2017;12(5):353-369.

[115]

Khuong-Quang DA, Buczkowicz P, Rakopoulos P, et al. K27M mutation in histone H3.3 defines clinically and biologically distinct subgroups of pediatric diffuse intrinsic pontine gliomas. Acta Neuropathol. 2012;124(3):439-447.

[116]

Chatwin HV, Cruz Cruz J, Green AL. Pediatric high-grade glioma: moving toward subtype-specific multimodal therapy. FEBS J. 2021;288(21):6127-6141.

[117]

Rallis KS, George AM, Wozniak AM, et al. Molecular genetics and targeted therapies for paediatric high-grade glioma. Cancer Genomics Proteomics. 2022;19(4):390-414.

[118]

Brągiel-Pieczonka A, Lipka G, Stapińska-Syniec A, et al. The profiles of Tet-mediated DNA hydroxymethylation in human gliomas. Front Oncol. 2022;12:621460.

[119]

Sun Y, Bailey CP, Sadighi Z, Zaky W, Chandra J. Pediatric high-grade glioma: aberrant epigenetics and kinase signaling define emerging therapeutic opportunities. J Neurooncol. 2020;150(1):17-26.

[120]

Sturm D, Bender S, Jones DTW, et al. Paediatric and adult glioblastoma: multiform (epi)genomic culprits emerge. Nat Rev Cancer. 2014;14(2):92-107.

[121]

Lee CH, Yu JR, Granat J, et al. Automethylation of PRC2 promotes H3K27 methylation and is impaired in H3K27M pediatric glioma. Genes Dev. 2019;33(19-20):1428-1440.

[122]

Vanan MI, Underhill DA, Eisenstat DD. Targeting epigenetic pathways in the treatment of pediatric diffuse (high grade) gliomas. Neurotherapeutics. 2017;14(2):274-283.

[123]

Fontebasso AM, Schwartzentruber J, Khuong-Quang DA, et al. Mutations in SETD2 and genes affecting histone H3K36 methylation target hemispheric high-grade gliomas. Acta Neuropathol. 2013;125(5):659-669.

[124]

Bailey CP, Figueroa M, Gangadharan A, et al. Pharmacologic inhibition of lysine-specific demethylase 1 as a therapeutic and immune-sensitization strategy in pediatric high-grade glioma. Neuro Oncol. 2020;22(9):1302-1314.

[125]

Krug B, Harutyunyan AS, Deshmukh S, Jabado N. Polycomb repressive complex 2 in the driver's seat of childhood and young adult brain tumours. Trends Cell Biol. 2021;31(10):814-828.

[126]

Lavarone E, Barbieri CM, Pasini D. Dissecting the role of H3K27 acetylation and methylation in PRC2 mediated control of cellular identity. Nat Commun. 2019;10(1):1679.

[127]

Hernández-Hernández A, López-Santaella T, Torres-Caballero A, et al. The transcriptomic landscape of pediatric astrocytoma. Int J Mol Sci. 2022;23(20):12696.

[128]

Grasso CS, Tang Y, Truffaux N, et al. Functionally defined therapeutic targets in diffuse intrinsic pontine glioma. Nat Med. 2015;21(6):555-559.

[129]

Monje M, Cooney T, Glod J, et al. Phase I trial of panobinostat in children with diffuse intrinsic pontine glioma: a report from the Pediatric Brain Tumor Consortium (PBTC-047). Neuro Oncol. 2023;25(12):2262-2272.

[130]

Abedalthagafi M, Mobark N, Al-Rashed M, AlHarbi M. Epigenomics and immunotherapeutic advances in pediatric brain tumors. NPJ Precis Oncol. 2021;5(1):34.

[131]

Groves A, Cooney TM. Epigenetic programming of pediatric high-grade glioma: pushing beyond proof of concept to clinical benefit. Front Cell Dev Biol. 2022;10:1089898.

[132]

Zhang Y, Dong W, Zhu J, Wang L, Wu X, Shan H. Combination of EZH2 inhibitor and BET inhibitor for treatment of diffuse intrinsic pontine glioma. Cell Biosci. 2017;7(1):56.

[133]

Wiese M, Hamdan FH, Kubiak K, et al. Combined treatment with CBP and BET inhibitors reverses inadvertent activation of detrimental super enhancer programs in DIPG cells. Cell Death Dis. 2020;11(8):673.

[134]

Taylor IC, Hütt-Cabezas M, Brandt WD, et al. Disrupting NOTCH slows diffuse intrinsic pontine glioma growth, enhances radiation sensitivity, and shows combinatorial efficacy with bromodomain inhibition. J Neuropathol Exp Neurol. 2015;74(8):778-790.

[135]

Kailayangiri S, Altvater B, Lesch S, et al. EZH2 inhibition in Ewing sarcoma upregulates G D2 expression for targeting with gene-modified T cells. Mol Ther. 2019;27(5):933-946.

[136]

Mabe NW, Huang M, Dalton GN, et al. Transition to a mesenchymal state in neuroblastoma confers resistance to anti-GD2 antibody via reduced expression of ST8SIA1. Nat Cancer. 2022;3(8):976-993.

[137]

Bonaventura P, Shekarian T, Alcazer V, et al. Cold tumors: a therapeutic challenge for immunotherapy. Front Immunol. 2019;10:168.

RIGHTS & PERMISSIONS

2024 The Authors. Clinical and Translational Medicine published by John Wiley & Sons Australia, Ltd on behalf of Shanghai Institute of Clinical Bioinformatics.

AI Summary AI Mindmap
PDF

229

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/