The TGFβ2-Snail1-miRNATGFβ2 Circuitry is Critical for the Development of Aggressive Functions in Breast Cancer
Liyun Luo , Ning Xu , Weina Fan , Yixuan Wu , Pingping Chen , Zhihui Li , Zhimin He , Hao Liu , Ying Lin , Guopei Zheng
Clinical and Translational Medicine ›› 2024, Vol. 14 ›› Issue (2) : e1558
The TGFβ2-Snail1-miRNATGFβ2 Circuitry is Critical for the Development of Aggressive Functions in Breast Cancer
There have been contradictory reports on the biological role of transforming growth factor-βs (TGFβs) in breast cancer (BC), especially with regard to their ability to promote epithelial-mesenchymal transition (EMT). Here, we show that TGFβ2 is preferentially expressed in mesenchymal-like BCs and maintains the EMT phenotype, correlating with cancer stem cell-like characteristics, growth, metastasis and chemo-resistance and predicting worse clinical outcomes. However, this is only true in ERα− BC. In ERα+ luminal-type BC, estrogen receptor interacts with p-Smads to block TGFβ signalling. Furthermore, we also identify a microRNAs (miRNAs) signature (miRNAsTGFβ2) that is weakened in TGFβ2-overexpressing BC cells. We discover that TGFβ2-Snail1 recruits enhancer of zeste homolog-2 to convert miRNAsTGFβ2 promoters from an active to repressive chromatin configuration and then repress miRNAsTGFβ2 transcription, forming a negative feedback loop. On the other hand, miRNAsTGFβ2 overexpression reverses the mesenchymal-like traits in agreement with the inhibition of TGFβ2-Snail1 signalling in BC cells. These findings clarify the roles of TGFβ2 in BC and suggest novel therapeutic strategies based on the TGFβ2-Snail1-miRNAsTGFβ2 loop for a subset type of human BCs.
breast cancer / chromatin configuration / epithelial-mesenchymal transition / miRNAs / TGFβ2
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
|
| [57] |
|
| [58] |
|
| [59] |
|
| [60] |
|
| [61] |
|
| [62] |
|
| [63] |
|
| [64] |
|
| [65] |
|
| [66] |
|
| [67] |
|
| [68] |
|
| [69] |
|
| [70] |
|
| [71] |
|
| [72] |
|
| [73] |
|
| [74] |
|
2024 The Authors. Clinical and Translational Medicine published by John Wiley & Sons Australia, Ltd on behalf of Shanghai Institute of Clinical Bioinformatics.
/
| 〈 |
|
〉 |