Targeting one-carbon metabolism for cancer immunotherapy

Xinxin Ren , Xiang Wang , Guowan Zheng , Shanshan Wang , Qiyue Wang , Mengnan Yuan , Tong Xu , Jiajie Xu , Ping Huang , Minghua Ge

Clinical and Translational Medicine ›› 2024, Vol. 14 ›› Issue (1) : e1521

PDF
Clinical and Translational Medicine ›› 2024, Vol. 14 ›› Issue (1) : e1521 DOI: 10.1002/ctm2.1521
REVIEW

Targeting one-carbon metabolism for cancer immunotherapy

Author information +
History +
PDF

Abstract

Background: One-carbon (1C) metabolism is a metabolic network that plays essential roles in biological reactions. In 1C metabolism, a series of nutrients are used to fuel metabolic pathways, including nucleotide metabolism, amino acid metabolism, cellular redox defence and epigenetic maintenance. At present, 1C metabolism is considered the hallmark of cancer. The 1C units obtained from the metabolic pathways increase the proliferation rate of cancer cells. In addition, anticancer drugs, such as methotrexate, which target 1C metabolism, have long been used in the clinic. In terms of immunotherapy, 1C metabolism has been used to explore biomarkers connected with immunotherapy response and immune-related adverse events in patients.

Methods: We collected numerous literatures to explain the roles of one-carbon metabolism in cancer immunotherapy.

Results: In this review, we focus on the important pathways in 1C metabolism and the function of 1C metabolism enzymes in cancer immunotherapy. Then, we summarise the inhibitors acting on 1C metabolism and their potential application on cancer immunotherapy. Finally, we provide a viewpoint and conclusion regarding the opportunities and challenges of targeting 1C metabolism for cancer immunotherapy in clinical practicability in the future.

Conclusion: Targeting one-carbon metabolism is useful for cancer immunotherapy.

Keywords

cancer immunotherapy / enzymes / inhibitors / one-carbon metabolism

Cite this article

Download citation ▾
Xinxin Ren, Xiang Wang, Guowan Zheng, Shanshan Wang, Qiyue Wang, Mengnan Yuan, Tong Xu, Jiajie Xu, Ping Huang, Minghua Ge. Targeting one-carbon metabolism for cancer immunotherapy. Clinical and Translational Medicine, 2024, 14(1): e1521 DOI:10.1002/ctm2.1521

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Sainero-Alcolado L, Liano-Pons J, Ruiz-Perez MV, Arsenian-Henriksson M. Targeting mitochondrial metabolism for precision medicine in cancer. Cell Death Differ. 2022;29(7):1304-1317.

[2]

Yu W, Wang Z, Zhang K, et al. One-carbon metabolism supports S-adenosylmethionine and histone methylation to drive inflammatory macrophages. Mol Cell. 2019;75(6):1147-1160. e5.

[3]

Korsmo HW, Jiang X. One carbon metabolism and early development: a diet-dependent destiny. Trends Endocrinol Metab. 2021;32(8):579-593.

[4]

Ducker GS, Rabinowitz JD. One-carbon metabolism in health and disease. Cell Metab. 2017;25(1):27-42.

[5]

Dai X, Shen L, Zhang J. Cold atmospheric plasma: redox homeostasis to treat cancers? Trends Biotechnol. 2023;41(1):15-18.

[6]

Reich S, Nguyen CDL, Has C, et al. A multi-omics analysis reveals the unfolded protein response regulon and stress-induced resistance to folate-based antimetabolites. Nat Commun. 2020;11(1):2936.

[7]

Mensurado S, Blanco-Dominguez R, Silva-Santos B. The emerging roles of gammadelta T cells in cancer immunotherapy. Nat Rev Clin Oncol. 2023;20(3):178-191.

[8]

Ma X, Li SJ, Liu Y, et al. Bioengineered nanogels for cancer immunotherapy. Chem Soc Rev. 2022;51(12):5136-5174.

[9]

Grisaru-Tal S, Rothenberg ME, Munitz A. Eosinophil-lymphocyte interactions in the tumor microenvironment and cancer immunotherapy. Nat Immunol. 2022;23(9):1309-1316.

[10]

Hamilton PT, Anholt BR, Nelson BH. Tumour immunotherapy: lessons from predator-prey theory. Nat Rev Immunol. 2022;22(12):765-775.

[11]

Chow A, Perica K, Klebanoff CA, Wolchok JD. Clinical implications of T cell exhaustion for cancer immunotherapy. Nat Rev Clin Oncol. 2022;19(12):775-790.

[12]

Wolf NK, Kissiov DU, Raulet DH. Roles of natural killer cells in immunity to cancer, and applications to immunotherapy. Nat Rev Immunol. 2022;23(2):90-105.

[13]

Kao KC, Vilbois S, Tsai CH, Ho PC. Metabolic communication in the tumour-immune microenvironment. Nat Cell Biol. 2022;24(11):1574-1583.

[14]

Sasai M, Ma JS, Okamoto M, et al. Uncovering a novel role of PLCbeta4 in selectively mediating TCR signaling in CD8+ but not CD4+ T cells. J Exp Med. 2021;218(7):e20201763.

[15]

Roy DG, Chen J, Mamane V, et al. Methionine metabolism shapes T helper cell responses through regulation of epigenetic reprogramming. Cell Metab. 2020;31(2):250-266. e9.

[16]

Han S, Georgiev P, Ringel AE, Sharpe AH, Haigis MC. Age-associated remodeling of T cell immunity and metabolism. Cell Metab. 2023;35(1):36-55.

[17]

Kim MJ, Kim K, Park HJ, et al. Deletion of PD-1 destabilizes the lineage identity and metabolic fitness of tumor-infiltrating regulatory T cells. Nat Immunol. 2023;24(1):148-161.

[18]

Zhang X, Ji L, Li MO. Control of tumor-associated macrophage responses by nutrient acquisition and metabolism. Immunity. 2023;56(1):14-31.

[19]

Raz S, Stark M, Assaraf YG. Folylpoly-gamma-glutamate synthetase: a key determinant of folate homeostasis and antifolate resistance in cancer. Drug Resist Updat. 2016;28:43-64.

[20]

Newman AC, Maddocks ODK. Serine and functional metabolites in cancer. Trends Cell Biol. 2017;27(9):645-657.

[21]

Lin JG, Kourtis S, Ghose R, Pardo Lorente N, Kubicek S, Sdelci S. Metabolic modulation of transcription: the role of one-carbon metabolism. Cell Chem Biol. 2022;S2451-9456(22):00415-00419.

[22]

Nawaz FZ, Kipreos ET. Emerging roles for folate receptor FOLR1 in signaling and cancer. Trends Endocrinol Metab. 2022;33(3):159-174.

[23]

Li Z, Wang F, Liang B, et al. Methionine metabolism in chronic liver diseases: an update on molecular mechanism and therapeutic implication. Signal Transduct Target Ther. 2020;5(1):280.

[24]

Guo R, Liang JH, Zhang Y, et al. Methionine metabolism controls the B cell EBV epigenome and viral latency. Cell Metab. 2022;34(9):1280-1297. e9.

[25]

Walker AK. 1-Carbon cycle metabolites methylate their way to fatty liver. Trends Endocrinol Metab. 2017;28(1):63-72.

[26]

Bandyopadhyay P, Pramanick I, Biswas R, et al. S-Adenosylmethionine-responsive cystathionine beta-synthase modulates sulfur metabolism and redox balance in Mycobacterium tuberculosis. Sci Adv. 2022;8(25):eabo0097.

[27]

Zhang HF, Klein Geltink RI, Parker SJ, Sorensen PH. Transsulfuration, minor player or crucial for cysteine homeostasis in cancer. Trends Cell Biol. 2022;32(9):800-814.

[28]

Zhou YF, Wu XM, Zhou G, et al. Cystathionine beta-synthase is required for body iron homeostasis. Hepatology. 2018;67(1):21-35.

[29]

Salazar OR, NA P, Cui G, et al. The coral Acropora loripes genome reveals an alternative pathway for cysteine biosynthesis in animals. Sci Adv. 2022;8(38):eabq0304.

[30]

Pan S, Fan M, Liu Z, Li X, Wang H. Serine, glycine and one‑carbon metabolism in cancer (Review). Int J Oncol. 2021;58(2):158-170.

[31]

Sun W, Zhao E, Cui H. Target enzymes in serine-glycine-one-carbon metabolic pathway for cancer therapy. Int J Cancer. 2023;152(12):2446-2463.

[32]

Petrova B, Maynard AG, Wang P, Kanarek N. Regulatory mechanisms of one-carbon metabolism enzymes. J Biol Chem. 2023:105457.

[33]

Xu Y, Ren J, Wang W, Zeng AP. Improvement of glycine biosynthesis from one-carbon compounds and ammonia catalyzed by the glycine cleavage system in vitro. Eng Life Sci. 2022;22(1):40-53.

[34]

Mukha D, Fokra M, Feldman A, et al. Glycine decarboxylase maintains mitochondrial protein lipoylation to support tumor growth. Cell Metab. 2022;34(5):775-782. e9.

[35]

Mirzadeh Azad F, Struys EA, Wingert V, et al. Spic regulates one-carbon metabolism and histone methylation in ground-state pluripotency. Sci Adv. 2023;9(33):eadg7997.

[36]

Arnoriaga-Rodriguez M, Mayneris-Perxachs J, Contreras-Rodriguez O, et al. Obesity-associated deficits in inhibitory control are phenocopied to mice through gut microbiota changes in one-carbon and aromatic amino acids metabolic pathways. Gut. 2021;70(12):2283-2296.

[37]

Luo L, Zheng Y, Lin Z, et al. Identification of SHMT2 as a potential prognostic biomarker and correlating with immune infiltrates in lung adenocarcinoma. J Immunol Res. 2021;2021:6647122.

[38]

Kong W, Wang Z, Chen N, Mei Y, Li Y, Yue Y. SHMT2 regulates serine metabolism to promote the progression and immunosuppression of papillary renal cell carcinoma. Front Oncol. 2022;12:914332.

[39]

Ierano C, Righelli D, D'Alterio C, et al. In PD-1+ human colon cancer cells NIVOLUMAB promotes survival and could protect tumor cells from conventional therapies. J Immunother Cancer. 2022;10(3):e004032.

[40]

Cui L, Chen H, Zhao X. The prognostic significance of immune-related metabolic enzyme MTHFD2 in head and neck squamous cell carcinoma. Diagnostics. 2020;10(9):689.

[41]

Zhu L, Liu X, Zhang W, Hu H, Wang Q, Xu K. MTHFD2 is a potential oncogene for its strong association with poor prognosis and high level of immune infiltrates in urothelial carcinomas of bladder. BMC Cancer. 2022;22(1):556.

[42]

Shang M, Yang H, Yang R, et al. The folate cycle enzyme MTHFD2 induces cancer immune evasion through PD-L1 up-regulation. Nat Commun. 2021;12(1):1940.

[43]

Wang W, Gu W, Tang H, et al. The emerging role of MTHFD family genes in regulating the tumor immunity of oral squamous cell carcinoma. J Oncol. 2022;2022:4867730.

[44]

Sugiura A, Andrejeva G, Voss K, et al. MTHFD2 is a metabolic checkpoint controlling effector and regulatory T cell fate and function. Immunity. 2022;55(1):65-81. e9.

[45]

Dersh D, Phelan JD, Gumina ME, et al. Genome-wide screens identify lineage- and tumor-specific genes modulating MHC-I- and MHC-II-restricted immunosurveillance of human lymphomas. Immunity. 2021;54(1):116-131. e10.

[46]

Izeradjene K, Revillard JP, Genestier L. Inhibition of thymidine synthesis by folate analogues induces a Fas-Fas ligand-independent deletion of superantigen-reactive peripheral T cells. Int Immunol. 2001;13(1):85-93.

[47]

Peng D, Kryczek I, Nagarsheth N, et al. Epigenetic silencing of TH1-type chemokines shapes tumour immunity and immunotherapy. Nature. 2015;527(7577):249-253.

[48]

Li B, Wang Z, Wu H, et al. Epigenetic regulation of CXCL12 plays a critical role in mediating tumor progression and the immune response in osteosarcoma. Cancer Res. 2018;78(14):3938-3953.

[49]

Wang L, Yang G, Liu G, Pan Y. Identification of lncRNA signature of tumor-infiltrating T lymphocytes with potential implications for prognosis and chemotherapy of head and neck squamous cell carcinoma. Front Pharmacol. 2021;12:795205.

[50]

Jan CI, Huang SW, Canoll P, et al. Targeting human leukocyte antigen G with chimeric antigen receptors of natural killer cells convert immunosuppression to ablate solid tumors. J Immunother Cancer. 2021;9(10):e003050.

[51]

Zhou C, Zhang Y, Yan R, et al. Exosome-derived miR-142-5p remodels lymphatic vessels and induces IDO to promote immune privilege in the tumour microenvironment. Cell Death Differ. 2021;28(2):715-729.

[52]

Li CH, Lin MH, Chu SH, et al. Role of glycine N-methyltransferase in the regulation of T-cell responses in experimental autoimmune encephalomyelitis. Mol Med. 2015;20(1):684-696.

[53]

Cappello A, Mancini M, Madonna S, et al. Extracellular serine empowers epidermal proliferation and psoriasis-like symptoms. Sci Adv. 2022;8(50):eabm7902.

[54]

Ma EH, Bantug G, Griss T, et al. Serine is an essential metabolite for effector T cell expansion. Cell Metab. 2017;25(2):345-357.

[55]

Yang QQ, Zhang Y, Yang J. Association between SHMT1 rs1979277 polymorphism and risk of acute lymphoblastic leukemia: a systematic review and meta-analysis. J Pediatr Hematol Oncol. 2022;44(3):e616-e622.

[56]

Efremova O, Ponomarenko I, Churnosov M. Maternal polymorphic loci of rs1979277 serine hydroxymethyl transferase and rs1805087 5-methylenetetrahydrofolate are correlated with the development of fetal growth restriction: a case-control study. Int J Reprod Biomed. 2021;19(12):1067-1074.

[57]

Skibola CF, Smith MT, Hubbard A, et al. Polymorphisms in the thymidylate synthase and serine hydroxymethyltransferase genes and risk of adult acute lymphocytic leukemia. Blood. 2002;99(10):3786-3791.

[58]

Andlauer TF, Buck D, Antony G, et al. Novel multiple sclerosis susceptibility loci implicated in epigenetic regulation. Sci Adv. 2016;2(6):e1501678.

[59]

Chou A, Lee SH, Zhu F, Clomburg JM, Gonzalez R. An orthogonal metabolic framework for one-carbon utilization. Nat Metab. 2021;3(10):1385-1399.

[60]

Field MS, Kamynina E, Chon J, Stover PJ. Nuclear folate metabolism. Annu Rev Nutr. 2018;38:219-243.

[61]

Lee ASE, Rotella K, Agyemang A, Ho HE, Oishi K, Cunningham-Rundles C. Biallelic MTHFD1 variants presenting as severe combined immunodeficiency. Clin Immunol. 2023;255:109768.

[62]

Chen Q, Du X, Hu S, Huang Q. NF-kappaB-related metabolic gene signature predicts the prognosis and immunotherapy response in gastric cancer. Biomed Res Int. 2022;2022:5092505.

[63]

Zhao LN, Bjorklund M, Caldez MJ, Zheng J, Kaldis P. Therapeutic targeting of the mitochondrial one-carbon pathway: perspectives, pitfalls, and potential. Oncogene. 2021;40(13):2339-2354.

[64]

Wang Z, Embaye KS, Yang Q, et al. Establishment and validation of a prognostic signature for lung adenocarcinoma based on metabolism-related genes. Cancer Cell Int. 2021;21(1):219.

[65]

Wang Y, Fan J, Chen T, et al. A novel ferroptosis-related gene prognostic index for prognosis and response to immunotherapy in patients with prostate cancer. Front Endocrinol. 2022;13:975623.

[66]

Guo Q, Zhu D, Bu X. Efficient killing of radioresistant breast cancer cells by cytokine-induced killer cells. Tumour Biol. 2017;39(3):1010428317695961.

[67]

Lu CS, Lin CW, Chang YH, et al. Antimetabolite pemetrexed primes a favorable tumor microenvironment for immune checkpoint blockade therapy. J Immunother Cancer. 2020;8(2):e001392.

[68]

Sakamoto J, Hamashima H, Suzuki H, et al. Thymidylate synthase expression as a predictor of the prognosis of curatively resected colon carcinoma in patients registered in an adjuvant immunochemotherapy clinical trial. Oncol Rep. 2003;10(5):1081-1090.

[69]

Wong KK. DNMT1: a key drug target in triple-negative breast cancer. Semin Cancer Biol. 2021;72:198-213.

[70]

Beck MA, Fischer H, Grabner LM, et al. DNA hypomethylation leads to cGAS-induced autoinflammation in the epidermis. EMBO J. 2021;40(22):e108234.

[71]

Chen X, Pan X, Zhang W, et al. Epigenetic strategies synergize with PD-L1/PD-1 targeted cancer immunotherapies to enhance antitumor responses. Acta Pharm Sin B. 2020;10(5):723-733.

[72]

Wu SY, Xiao Y, Wei JL, et al. MYC suppresses STING-dependent innate immunity by transcriptionally upregulating DNMT1 in triple-negative breast cancer. J Immunother Cancer. 2021;9(7):e002528.

[73]

Hong YK, Li Y, Pandit H, et al. Epigenetic modulation enhances immunotherapy for hepatocellular carcinoma. Cell Immunol. 2019;336:66-74.

[74]

Li Y, Hong YK, Wang X, et al. Epigenetic modulation enhances immunotherapy for pancreatic ductal adenocarcinoma. Clin Transl Immunol. 2022;11(12):e1430.

[75]

Zhao H, Ning S, Nolley R, et al. The immunomodulatory anticancer agent, RRx-001, induces an interferon response through epigenetic induction of viral mimicry. Clin Epigenet. 2017;9:4.

[76]

Simonian R, Pannia E, Hammoud R, et al. Methylenetetrahydrofolate reductase deficiency and high dose FA supplementation disrupt embryonic development of energy balance and metabolic homeostasis in zebrafish. Hum Mol Genet. 2023;32(9):1575-1588.

[77]

Wang X, Xu Z, Ren X, et al. MTHFR inhibits TRC8-mediated HMOX1 ubiquitination and regulates ferroptosis in ovarian cancer. Clin Transl Med. 2022;12(9):e1013.

[78]

Paniz C, Bertinato JF, Lucena MR, et al. A daily dose of 5 mg folic acid for 90 days is associated with increased serum unmetabolized folic acid and reduced natural killer cell cytotoxicity in healthy Brazilian adults. J Nutr. 2017;147(9):1677-1685.

[79]

Raghubeer S, Matsha TE. Methylenetetrahydrofolate (MTHFR), the one-carbon cycle, and cardiovascular risks. Nutrients. 2021;13(12):4562.

[80]

Alfaleh A, Alkattan A, Mahmoud N, et al. The association between MTHFR C677T gene polymorphism and repeated pregnancy loss in arabic countries: a systematic review and meta-analysis. Reprod Sci. 2023;30(7):2060-2068.

[81]

Li Y, Qiu S, Shi J, et al. Association between MTHFR C677T/A1298C and susceptibility to autism spectrum disorders: a meta-analysis. BMC Pediatr. 2020;20(1):449.

[82]

Ginani CTA, da Luz JRD, de Medeiros KS, Sarmento ACA, Coppede F, das Gracas Almeida M. Association of C677T and A1298C polymorphisms of the MTHFR gene with maternal risk for Down syndrome: a meta-analysis of case-control studies. Mutat Res. 2023;792:108470.

[83]

Zeng H, He D, Zhao Y, Liu NG, Xie H. Association between MTHFR polymorphisms (MTHFR C677T, MTHFR A1298C) and recurrent implantation failure: a systematic review and meta-analysis. Arch Gynecol Obstet. 2021;303(4):1089-1098.

[84]

Choi YJ, Lee SY, Kwon SO, et al. The association between MTHFR polymorphism, dietary methyl donors, and childhood asthma and atopy. Asian Pac J Allergy Immunol. 2023.

[85]

Lisboa JVC, Ribeiro MR, Luna RCP, et al. Food intervention with folate reduces TNF-alpha and interleukin levels in overweight and obese women with the MTHFR C677T polymorphism: a randomized trial. Nutrients. 2020;12(2):361.

[86]

Hesari A, Maleksabet A, Tirkani AN, et al. Evaluation of the two polymorphisms rs1801133 in MTHFR and rs10811661 in CDKN2A/B in breast cancer. J Cell Biochem. 2019;120(2):2090-2097.

[87]

Cencini E, Sicuranza A, Fabbri A, et al. Study of gene polymorphisms as predictors of treatment efficacy and toxicity in patients with indolent non-hodgkin lymphomas and mantle cell lymphoma receiving bendamustine and rituximab. Br J Haematol. 2019;184(2):223-231.

[88]

Sun J, Zhang W, Zhao Y, et al. Conditional control of chimeric antigen receptor T-cell activity through a destabilizing domain switch and its chemical ligand. Cytotherapy. 2021;23(12):1085-1096.

[89]

Birocchi F, Cusimano M, Rossari F, et al. Targeted inducible delivery of immunoactivating cytokines reprograms glioblastoma microenvironment and inhibits growth in mouse models. Sci Transl Med. 2022;14(653):eabl4106.

[90]

Krupenko SA, Cole SA, Hou R, et al. Genetic variants in ALDH1L1 and GLDC influence the serine-to-glycine ratio in Hispanic children. Am J Clin Nutr. 2022;116(2):500-510.

[91]

Li Z, Li X, Jin M, et al. Identification of potential biomarkers and their correlation with immune infiltration cells in schizophrenia using combinative bioinformatics strategy. Psychiatry Res. 2022;314:114658.

[92]

Wei X, Deng W, Dong Z, et al. Redox metabolism-associated molecular classification of clear cell renal cell carcinoma. Oxid Med Cell Long. 2022;2022:5831247.

[93]

Stipanuk MH. Metabolism of sulfur-containing amino acids: how the body copes with excess methionine, cysteine, and sulfide. J Nutr. 2020;150(1):2494S-2505S. Suppl.

[94]

Eudy BJ, McDermott CE, Liu X, da Silva RP. Targeted and untargeted metabolomics provide insight into the consequences of glycine-N-methyltransferase deficiency including the novel finding of defective immune function. Physiol Rep. 2020;8(18):e14576.

[95]

Dekker JW, Budhia S, Angel NZ, et al. Identification of an S-adenosylhomocysteine hydrolase-like transcript induced during dendritic cell differentiation. Immunogenetics. 2002;53(12):993-1001.

[96]

Snell K, Riches D. Effects of a triazine antifolate (NSC 127755) on serine hydroxymethyltransferase in myeloma cells in culture. Cancer Lett. 1989;44(3):217-220.

[97]

Ducker GS, Ghergurovich JM, Mainolfi N, et al. Human SHMT inhibitors reveal defective glycine import as a targetable metabolic vulnerability of diffuse large B-cell lymphoma. Proc Nat Acad Sci USA. 2017;114(43):11404-11409.

[98]

Witschel MC, Rottmann M, Schwab A, et al. Inhibitors of plasmodial serine hydroxymethyltransferase (SHMT): cocrystal structures of pyrazolopyrans with potent blood- and liver-stage activities. J Med Chem. 2015;58(7):3117-3130.

[99]

Dekhne AS, Ning C, Nayeen MJ, et al. Cellular pharmacodynamics of a novel pyrrolo[3,2-d]pyrimidine inhibitor targeting mitochondrial and cytosolic one-carbon metabolism. Mol Pharmacol. 2020;97(1):9-22.

[100]

Nguyen TH, Vemu PL, Hoy GE, et al. Serine hydroxymethyltransferase 2 expression promotes tumorigenesis in rhabdomyosarcoma with 12q13-q14 amplification. J Clin Invest. 2021;131(15):e138022.

[101]

Paiardini A, Fiascarelli A, Rinaldo S, et al. Screening and in vitro testing of antifolate inhibitors of human cytosolic serine hydroxymethyltransferase. Chem Med Chem. 2015;10(3):490-497.

[102]

Geeraerts SL, Kampen KR, Rinaldi G, et al. Repurposing the antidepressant sertraline as SHMT inhibitor to suppress serine/glycine synthesis-addicted breast tumor growth. Mol Cancer Ther. 2021;20(1):50-63.

[103]

Scaletti E, Jemth AS, Helleday T, Stenmark P. Structural basis of inhibition of the human serine hydroxymethyltransferase SHMT2 by antifolate drugs. FEBS Lett. 2019;593(14):1863-1873.

[104]

Duarte D, Vale N. Antidepressant Drug Sertraline against human cancer cells. Biomolecules. 2022;12(10):1513.

[105]

Garcia-Canaveras JC, Lancho O, Ducker GS, et al. SHMT inhibition is effective and synergizes with methotrexate in T-cell acute lymphoblastic leukemia. Leukemia. 2021;35(2):377-388.

[106]

Wilke AC, Doebele C, Zindel A, et al. SHMT2 inhibition disrupts the TCF3 transcriptional survival program in Burkitt lymphoma. Blood. 2022;139(4):538-553.

[107]

Pikman Y, Ocasio-Martinez N, Alexe G, et al. Targeting serine hydroxymethyltransferases 1 and 2 for T-cell acute lymphoblastic leukemia therapy. Leukemia. 2022;36(2):348-360.

[108]

Marani M, Paone A, Fiascarelli A, et al. A pyrazolopyran derivative preferentially inhibits the activity of human cytosolic serine hydroxymethyltransferase and induces cell death in lung cancer cells. Oncotarget. 2016;7(4):4570-4583.

[109]

Ren X, Rong Z, Liu X, et al. The protein kinase activity of NME7 activates Wnt/beta-catenin signaling to promote one-carbon metabolism in hepatocellular carcinoma. Cancer Res. 2022;82(1):60-74.

[110]

Gustafsson R, Jemth AS, Gustafsson NM, et al. Crystal structure of the emerging cancer target MTHFD2 in complex with a substrate-based inhibitor. Cancer Res. 2017;77(4):937-948.

[111]

Fu C, Sikandar A, Donner J, et al. The natural product carolacton inhibits folate-dependent C1 metabolism by targeting FolD/MTHFD. Nat Commun. 2017;8(1):1529.

[112]

Anderson DE, Cui J, Ye Q, et al. Orthogonal genome-wide screens of bat cells identify MTHFD1 as a target of broad antiviral therapy. Proc Nat Acad Sci USA. 2021;118(39):e2104759118.

[113]

Kawai J, Ota M, Ohki H, et al. Structure-based design and synthesis of an isozyme-selective MTHFD2 inhibitor with a tricyclic coumarin scaffold. ACS Med Chem Lett. 2019;10(6):893-898.

[114]

Kawai J, Toki T, Ota M, et al. Discovery of a potent, selective, and orally available MTHFD2 inhibitor (DS18561882) with in vivo antitumor activity. J Med Chem. 2019;62(22):10204-10220.

[115]

Ju HQ, Lu YX, Chen DL, et al. Modulation of redox homeostasis by inhibition of MTHFD2 in colorectal cancer: mechanisms and therapeutic implications. J Natl Cancer Inst. 2019;111(6):584-596.

[116]

Wang Z, Wei Y, Fang G, et al. Colorectal cancer combination therapy using drug and gene co-delivered, targeted poly(ethylene glycol)-epsilon-poly(caprolactone) nanocarriers. Drug Des Dev Ther. 2018;12:3171-3180.

[117]

Che HL, Lee HJ, Uto K, et al. Simultaneous drug and gene delivery from the biodegradable poly(epsilon-caprolactone) nanofibers for the treatment of liver cancer. J Nanosci Nanotechnol. 2015;15(10):7971-7975.

[118]

Cabeza L, Ortiz R, Prados J, et al. Improved antitumor activity and reduced toxicity of doxorubicin encapsulated in poly(epsilon-caprolactone) nanoparticles in lung and breast cancer treatment: an in vitro and in vivo study. Eur J Pharm Sci. 2017;102:24-34.

[119]

Zhao R, Feng T, Gao L, et al. PPFIA4 promotes castration-resistant prostate cancer by enhancing mitochondrial metabolism through MTHFD2. J Exp Clin Cancer Res. 2022;41(1):125.

[120]

Scaranti M, Cojocaru E, Banerjee S, Banerji U. Exploiting the folate receptor alpha in oncology. Nat Rev Clin Oncol. 2020;17(6):349-359.

[121]

Senkovich O, Bhatia V, Garg N, Chattopadhyay D. Lipophilic antifolate trimetrexate is a potent inhibitor of Trypanosoma cruzi: prospect for chemotherapy of Chagas' disease. Antimicrob Agents Chemother. 2005;49(8):3234-3238.

[122]

Liu H, Qin Y, Zhai D, et al. Antimalarial drug pyrimethamine plays a dual role in antitumor proliferation and metastasis through targeting DHFR and TP. Mol Cancer Ther. 2019;18(3):541-555.

[123]

Santi DV, McHenry CS, Sommer H. Mechanism of interaction of thymidylate synthetase with 5-fluorodeoxyuridylate. Biochemistry. 1974;13(3):471-481.

[124]

Jackman AL, Taylor GA, Gibson W, et al. ICI D1694, a quinazoline antifolate thymidylate synthase inhibitor that is a potent inhibitor of L1210 tumor cell growth in vitro and in vivo: a new agent for clinical study. Cancer Res. 1991;51(20):5579-5586.

[125]

Shih C, Chen VJ, Gossett LS, et al. LY231514, a pyrrolo[2,3-d]pyrimidine-based antifolate that inhibits multiple folate-requiring enzymes. Cancer Res. 1997;57(6):1116-1123.

[126]

Piper JR, McCaleb GS, Montgomery JA, Kisliuk RL, Gaumont Y, Sirotnak FM. Syntheses and antifolate activity of 5-methyl-5-deaza analogues of aminopterin, methotrexate, folic acid, and N10-methylfolic acid. J Med Chem. 1986;29(6):1080-1087.

[127]

Sirotnak FM, DeGraw JI, Colwell WT, Piper JR. A new analogue of 10-deazaaminopterin with markedly enhanced curative effects against human tumor xenografts in mice. Cancer Chemother Pharmacol. 1998;42(4):313-318.

[128]

Cammarata M, Thyer R, Lombardo M, et al. Characterization of trimethoprim resistant E. coli dihydrofolate reductase mutants by mass spectrometry and inhibition by propargyl-linked antifolates. Chem Sci. 2017;8(5):4062-4072.

[129]

Liu H, Qin Y, Zhai D, et al. Antimalarial Drug Pyrimethamine Plays a Dual Role in Antitumor Proliferation and Metastasis through Targeting DHFR and TP. Mol Cancer Ther. 2019;18(3):541-555.

[130]

Jackman AL, Farrugia DC, Gibson W, et al. ZD1694 (Tomudex): a new thymidylate synthase inhibitor with activity in colorectal cancer. Eur J Cancer. 1995;31A(7-8):1277-1282.

[131]

Sigel CW, Macklin AW. Preclinical biochemical pharmacology and toxicology of piritrexim, a lipophilic inhibitor of dihydrofolate reductase. NCI Monographs. 1987(5):111-120.

[132]

Vokes EE, Dimery IW, Jacobs CD, et al. A phase II study of piritrexim in combination with methotrexate in recurrent and metastatic head and neck cancer. Cancer. 1991;67(9):2253-2257.

[133]

Perabo FG, Muller SC. New agents for treatment of advanced transitional cell carcinoma. Ann Oncol. 2007;18(5):835-843.

[134]

Fry DW, Jackson RC. Biological and biochemical properties of new anticancer folate antagonists. Cancer Metastasis Rev. 1987;5(3):251-270.

[135]

Gibbs DD, Theti DS, Wood N, et al. BGC 945, a novel tumor-selective thymidylate synthase inhibitor targeted to alpha-folate receptor-overexpressing tumors. Cancer Res. 2005;65(24):11721-11728.

[136]

Beutel G, Glen H, Schoffski P, et al. Phase I study of OSI-7904L, a novel liposomal thymidylate synthase inhibitor in patients with refractory solid tumors. Clin Cancer Res. 2005;11(15):5487-5495.

[137]

Jia W, Li J, Du F, et al. Assay development for determination of DZ2002, a new reversible SAHH inhibitor, and its acid metabolite DZA in blood and application to rat pharmacokinetic study. J Pharm Anal. 2019;9(1):25-33.

[138]

Hayden A, Johnson PW, Packham G, Crabb SJ. S-adenosylhomocysteine hydrolase inhibition by 3-deazaneplanocin A analogues induces anti-cancer effects in breast cancer cell lines and synergy with both histone deacetylase and HER2 inhibition. Breast Cancer Res Treat. 2011;127(1):109-119.

[139]

Endresen PC, Prytz PS, Lysne S, Aarbakke J. Homocysteine increases the relative number of apoptotic cells and reduces the relative number of apoptotic bodies in HL-60 cells treated with 3-deazaadenosine. J Pharmacol Exp Ther. 1994;269(3):1245-1253.

[140]

Ctrnacta V, Fritzler JM, Surinova M, Hrdy I, Zhu G, Stejskal F. Efficacy of S-adenosylhomocysteine hydrolase inhibitors, D-eritadenine and (S)-DHPA, against the growth of Cryptosporidium parvum in vitro. Exp Parasitol. 2010;126(2):113-116.

[141]

Cai S, Li QS, Borchardt RT, Kuczera K, Schowen RL. The antiviral drug ribavirin is a selective inhibitor of S-adenosyl-L-homocysteine hydrolase from Trypanosoma cruzi. Bioorg Med Chem. 2007;15(23):7281-7287.

[142]

Tan H, He L, Cheng Z. Inhibition of eIF4E signaling by ribavirin selectively targets lung cancer and angiogenesis. Biochem Biophys Res Commun. 2020;529(3):519-525.

[143]

Jin J, Xiang W, Wu S, Wang M, Xiao M, Deng A. Targeting eIF4E signaling with ribavirin as a sensitizing strategy for ovarian cancer. Biochem Biophys Res Commun. 2019;510(4):580-586.

[144]

Huang PJ, Chiu CC, Hsiao MH, Yow JL, Tzang BS, Hsu TC. Potential of antiviral drug oseltamivir for the treatment of liver cancer. Int J Oncol. 2021;59(6):109.

[145]

Borden KL, Culjkovic-Kraljacic B. Ribavirin as an anti-cancer therapy: acute myeloid leukemia and beyond? Leuk Lymphoma. 2010;51(10):1805-1815.

[146]

Shen X, Zhu Y, Xiao Z, et al. Antiviral drug ribavirin targets thyroid cancer cells by inhibiting the eIF4E-beta-catenin axis. Am J Med Sci. 2017;354(2):182-189.

[147]

Reddy MC, Kuppan G, Shetty ND, Owen JL, Ioerger TR, Sacchettini JC. Crystal structures of Mycobacterium tuberculosis S-adenosyl-L-homocysteine hydrolase in ternary complex with substrate and inhibitors. Protein science : a publication of the. Protein Soc. 2008;17(12):2134-2144.

[148]

Kim JH, Kim JH, Kim SC, et al. Adenosine dialdehyde suppresses MMP-9-mediated invasion of cancer cells by blocking the Ras/Raf-1/ERK/AP-1 signaling pathway. Biochem Pharmacol. 2013;86(9):1285-1300.

[149]

Shiota M, Takeuchi A, Yokomizo A, Kashiwagi E, Tatsugami K, Naito S. Methyltransferase inhibitor adenosine dialdehyde suppresses androgen receptor expression and prostate cancer growth. J Urol. 2012;188(1):300-306.

[150]

Chuang CY, Chang CP, Lee YJ, et al. PRMT1 expression is elevated in head and neck cancer and inhibition of protein arginine methylation by adenosine dialdehyde or PRMT1 knockdown downregulates proliferation and migration of oral cancer cells. Oncol Rep. 2017;38(2):1115-1123.

[151]

Singh P, Charles S, Madhavan T, et al. Pharmacologic downregulation of protein arginine methyltransferase1 expression by adenosine dialdehyde increases cell senescence in breast cancer. Eur J Pharmacol. 2021;891:173697.

[152]

Hao W, Li Y, Shan Q, et al. Characterization of human S-adenosyl-homocysteine hydrolase in vitro and identification of its potential inhibitors. J Enzyme Inhib Med Chem. 2017;32(1):1209-1215.

[153]

Park YJ, Choi CI, Chung KH, Kim KH. Pharbilignan C induces apoptosis through a mitochondria-mediated intrinsic pathway in human breast cancer cells. Bioorg Med Chem Lett. 2016;26(19):4645-4649.

[154]

Han HY, Wang XH, Wang NL, Ling MT, Wong YC, Yao XS. Lignans isolated from Campylotropis hirtella (Franch.) Schindl. decreased prostate specific antigen and androgen receptor expression in LNCaP cells. J Agric Food Chem. 2008;56(16):6928-6935.

[155]

Pappalardi MB, Keenan K, Cockerill M, et al. Discovery of a first-in-class reversible DNMT1-selective inhibitor with improved tolerability and efficacy in acute myeloid leukemia. Nat Cancer. 2021;2(10):1002-1017.

[156]

Sanaei M, Kavoosi F, Pourahmadi M. Effect of decitabine (5-aza-2'-deoxycytidine, 5-aza-CdR) in comparison with vorinostat (suberoylanilide hydroxamic acid, SAHA) on DNMT1, DNMT3a and DNMT3b, HDAC 1–3, SOCS 1, SOCS 3, JAK2, and STAT3 gene expression in hepatocellular carcinoma HLE and LCL-PI 11 cell lines. Asian Pac J Cancer Prev. 2021;22(7):2089-2098.

[157]

Thakar M, Hu Y, Morreale M, et al. A novel epigenetic modulating agent sensitizes pancreatic cells to a chemotherapy agent. PLoS One. 2018;13(6):e0199130.

[158]

Hung CS, Wang SC, Yen YT, Lee TH, Wen WC, Lin RK. Hypermethylation of CCND2 in lung and breast cancer is a potential biomarker and drug target. Int J Mol Sci. 2018;19(10):3096.

[159]

Kumar VB, Yuan TC, Liou JW, Yang CJ, Sung PJ, Weng CF. Antroquinonol inhibits NSCLC proliferation by altering PI3K/mTOR proteins and miRNA expression profiles. Mutat Res. 2011;707(1-2):42-52.

[160]

Yu CC, Chiang PC, Lu PH, et al. Antroquinonol, a natural ubiquinone derivative, induces a cross talk between apoptosis, autophagy and senescence in human pancreatic carcinoma cells. J Nutr Biochem. 2012;23(8):900-907.

[161]

Bechmann N, Ehrlich H, Eisenhofer G, et al. Anti-tumorigenic and anti-metastatic activity of the sponge-derived marine drugs aeroplysinin-1 and isofistularin-3 against pheochromocytoma in vitro. Mar Drugs. 2018;16(5):172.

[162]

Florean C, Schnekenburger M, Lee JY, et al. Discovery and characterization of Isofistularin-3, a marine brominated alkaloid, as a new DNA demethylating agent inducing cell cycle arrest and sensitization to TRAIL in cancer cells. Oncotarget. 2016;7(17):24027-24049.

[163]

Weng JR, Lai IL, Yang HC, Lin CN, Bai LY. Identification of kazinol Q, a natural product from Formosan plants, as an inhibitor of DNA methyltransferase. Phytother Res. 2014;28(1):49-54.

[164]

Oodi A, Norouzi H, Amirizadeh N, Nikougoftar M, Vafaie Z. Harmine, a novel DNA methyltransferase 1 inhibitor in the leukemia cell line. Indian J Hematol Blood Transfus. 2017;33(4):509-515.

[165]

Sarkar S, Tribedi P, Bhadra K. Structure-activity insights of harmine targeting DNA, ROS inducing cytotoxicity with PARP mediated apoptosis against cervical cancer, anti-biofilm formation and in vivo therapeutic study. J Biomol Struct Dyn. 2022;40(13):5880-5902.

[166]

Chen ZY, Li J, Zhu SD, et al. Harmine reinforces the effects of regorafenib on suppressing cell proliferation and inducing apoptosis in liver cancer cells. Exp Ther Med. 2022;23(3):209.

[167]

Wu LW, Zhang JK, Rao M, Zhang ZY, Zhu HJ, Zhang C. Harmine suppresses the proliferation of pancreatic cancer cells and sensitizes pancreatic cancer to gemcitabine treatment. OncoTargets Ther. 2019;12:4585-4593.

[168]

Zhou P, Lu Y, Sun XH. Effects of a novel DNA methyltransferase inhibitor Zebularine on human lens epithelial cells. Mol Vis. 2012;18:22-28.

[169]

Yap ZH, Kong WY, Azeez AR, Fang CM, Ngai SC. Anti-cancer effects of epigenetics drugs scriptaid and zebularine in human breast adenocarcinoma cells. Anticancer Agents Med Chem. 2022;22(8):1582-1591.

[170]

Sanaei M, Kavoosi F. Effect of zebularine in comparison to trichostatin A on the intrinsic and extrinsic apoptotic pathway, cell viability, and apoptosis in hepatocellular carcinoma SK-Hep 1, human colorectal cancer SW620, and human pancreatic cancer PaCa-44 cell lines. Iran J Pharm Res. 2021;20(3):310-323.

[171]

Froese DS, Kopec J, Rembeza E, et al. Structural basis for the regulation of human 5,10-methylenetetrahydrofolate reductase by phosphorylation and S-adenosylmethionine inhibition. Nat Commun. 2018;9(1):2261.

[172]

Bertrand R, Jolivet J. Methenyltetrahydrofolate synthetase prevents the inhibition of phosphoribosyl 5-aminoimidazole 4-carboxamide ribonucleotide formyltransferase by 5-formyltetrahydrofolate polyglutamates. J Biol Chem. 1989;264(15):8843-8846.

[173]

Lin ZM, Ma M, Li H, et al. Topical administration of reversible SAHH inhibitor ameliorates imiquimod-induced psoriasis-like skin lesions in mice via suppression of TNF-alpha/IFN-gamma-induced inflammatory response in keratinocytes and T cell-derived IL-17. Pharmacol Res. 2018;129:443-452.

[174]

Huang Y, Wang S, Ding X, et al. Inhibition of S-adenosyl-L-homocysteine hydrolase alleviates alloimmune response by down-regulating CD4(+) T-cell activation in a mouse heart transplantation model. Ann Transl Med. 2020;8(23):1582.

[175]

Yang WS, Kim JH, Jeong D, et al. 3-Deazaadenosine, an S-adenosylhomocysteine hydrolase inhibitor, attenuates lipopolysaccharide-induced inflammatory responses via inhibition of AP-1 and NF-kappaB signaling. Biochem Pharmacol. 2020;182:114264.

[176]

Aury-Landas J, Bazille C, Allas L, et al. Anti-inflammatory and chondroprotective effects of the S-adenosylhomocysteine hydrolase inhibitor 3-Deazaneplanocin A, in human articular chondrocytes. Sci Rep. 2017;7(1):6483.

[177]

Nouzova M, Michalkova V, Ramirez CE, Fernandez-Lima F, Noriega FG. Inhibition of juvenile hormone synthesis in mosquitoes by the methylation inhibitor 3-deazaneplanocin A (DZNep). Insect Biochem Mol Biol. 2019;113:103183.

[178]

Tam EK, Nguyen TM, Lim CZ, et al. 3-Deazaneplanocin A and neplanocin A analogues and their effects on apoptotic cell death. Chem Med Chem. 2015;10(1):173-182.

[179]

Glazer RI, Knode MC, Tseng CK, Haines DR, Marquez VE. 3-Deazaneplanocin A: a new inhibitor of S-adenosylhomocysteine synthesis and its effects in human colon carcinoma cells. Biochem Pharmacol. 1986;35(24):4523-4527.

[180]

Luo X, Xiao Y, Song F, Yang Y, Xia M, Ling W. Increased plasma S-adenosyl-homocysteine levels induce the proliferation and migration of VSMCs through an oxidative stress-ERK1/2 pathway in apoE(-/-) mice. Cardiovasc Res. 2012;95(2):241-250.

[181]

Yamada T, Komoto J, Lou K, et al. Structure and function of eritadenine and its 3-deaza analogues: potent inhibitors of S-adenosylhomocysteine hydrolase and hypocholesterolemic agents. Biochem Pharmacol. 2007;73(7):981-989.

[182]

Li M, Li Y, Chen J, et al. Copper ions inhibit S-adenosylhomocysteine hydrolase by causing dissociation of NAD+ cofactor. Biochemistry. 2007;46(41):11451-11458.

[183]

Medici V, Shibata NM, Kharbanda KK, et al. Wilson's disease: changes in methionine metabolism and inflammation affect global DNA methylation in early liver disease. Hepatology. 2013;57(2):555-565.

[184]

Nahas MR, Stroopinsky D, Rosenblatt J, et al. Hypomethylating agent alters the immune microenvironment in acute myeloid leukaemia (AML) and enhances the immunogenicity of a dendritic cell/AML vaccine. Br J Haematol. 2019;185(4):679-690.

[185]

Wang SC, Lee TH, Hsu CH, et al. Antroquinonol D, isolated from Antrodia camphorata, with DNA demethylation and anticancer potential. J Agric Food Chem. 2014;62(24):5625-5635.

[186]

Wang Q, Liang N, Yang T, et al. DNMT1-mediated methylation of BEX1 regulates stemness and tumorigenicity in liver cancer. J Hepatol. 2021;75(5):1142-1153.

[187]

Lai J, Fu Y, Tian S, et al. Zebularine elevates STING expression and enhances cGAMP cancer immunotherapy in mice. Mol Ther. 2021;29(5):1758-1771.

[188]

Zhang J, Sang M, Gu L, et al. Zebularine treatment induces MAGE-A11 expression and improves CTL cytotoxicity using a novel identified HLA-A2-restricted MAGE-A11 peptide. J Immunother. 2017;40(6):211-220.

[189]

Fang H, Guo Z, Chen J, et al. Combination of epigenetic regulation with gene therapy-mediated immune checkpoint blockade induces anti-tumour effects and immune response in vivo. Nat Commun. 2021;12(1):6742.

[190]

Thiyagarajan V, Tsai MJ, Weng CF. Antroquinonol TARGETS FAK-signaling pathway suppressed cell migration, invasion, and tumor growth of C6 glioma. PLoS One. 2015;10(10):e0141285.

[191]

Chang TC, Yeh CT, Adebayo BO, et al. 4-Acetylantroquinonol B inhibits colorectal cancer tumorigenesis and suppresses cancer stem-like phenotype. Toxicol Appl Pharmacol. 2015;288(2):258-268.

[192]

Chiang PC, Lin SC, Pan SL, et al. Antroquinonol displays anticancer potential against human hepatocellular carcinoma cells: a crucial role of AMPK and mTOR pathways. Biochem Pharmacol. 2010;79(2):162-171.

[193]

Bezerra GA, Holenstein A, Foster WR, et al. Identification of small molecule allosteric modulators of 5,10-methylenetetrahydrofolate reductase (MTHFR) by targeting its unique regulatory domain. Biochimie. 2021;183:100-107.

[194]

Wu D, Li Y, Song G, et al. Structural basis for the inhibition of human 5,10-methenyltetrahydrofolate synthetase by N10-substituted folate analogues. Cancer Res. 2009;69(18):7294-7301.

[195]

Field MS, Szebenyi DM, Perry CA, Stover PJ. Inhibition of 5,10-methenyltetrahydrofolate synthetase. Arch Biochem Biophys. 2007;458(2):194-201.

[196]

Clare CE, Brassington AH, Kwong WY, Sinclair KD. One-carbon metabolism: linking nutritional biochemistry to epigenetic programming of long-term development. Annu Rev Anim Biosci. 2019;7:263-287.

[197]

Kurniawan H, Kobayashi T, Brenner D. The emerging role of one-carbon metabolism in T cells. Curr Opin Biotechnol. 2021;68:193-201.

[198]

Islam A, Shaukat Z, Hussain R, Gregory SL. One-carbon and polyamine metabolism as cancer therapy targets. Biomolecules. 2022;12(12):1902.

[199]

Sicard G, Protzenko D, Giacometti S, Barlesi F, Ciccolini J, Fanciullino R. Harnessing tumor immunity with cytotoxics: t cells monitoring in mice bearing lung tumors treated with anti-VEGF and pemetrexed-cisplatin doublet. Br J Cancer. 2023;129(9):1373-1382.

[200]

Garassino MC, Gadgeel S, Speranza G, et al. Pembrolizumab plus pemetrexed and platinum in nonsquamous non-small-cell lung cancer: 5-year outcomes from the phase 3 Keynote-189 study. J Clin Oncol. 2023;41(11):1992-1998.

[201]

Sun W, Liu R, Gao X, et al. Targeting serine-glycine-one-carbon metabolism as a vulnerability in cancers. Biomark Res. 2023;11(1):48.

[202]

Tagirasa R, Yoo E. Role of serine proteases at the tumor-stroma interface. Front Immunol. 2022;13:832418.

[203]

Geeraerts SL, Heylen E, De Keersmaecker K, Kampen KR. The ins and outs of serine and glycine metabolism in cancer. Nat Metab. 2021;3(2):131-141.

[204]

Tajan M, Hennequart M, Cheung EC, et al. Serine synthesis pathway inhibition cooperates with dietary serine and glycine limitation for cancer therapy. Nat Commun. 2021;12(1):366.

[205]

Zhang D, Li AM, Hu G, et al. PHGDH-mediated endothelial metabolism drives glioblastoma resistance to chimeric antigen receptor T cell immunotherapy. Cell Metab. 2023;35(3):517-534. e8.

[206]

Zhao JY, Feng KR, Wang F, et al. A retrospective overview of PHGDH and its inhibitors for regulating cancer metabolism. Eur J Med Chem. 2021;217:113379.

[207]

Mazzotta M, Pizzuti L, Krasniqi E, et al. Role of chemotherapy in vulvar cancers: time to rethink standard of care? Cancers. 2021;13(16):4061.

[208]

Kim J, Lei Y, Guo J, Kim SE, et al. Formate rescues neural tube defects caused by mutations in Slc25a32. Proc Nat Acad Sci USA. 2018;115(18):4690-4695.

[209]

Ma EH, Bantug G, Griss T, et al. Serine is an essential metabolite for effector T cell expansion. Cell Metab. 2017;25(2):482.

[210]

Wang P, Zhang X, Zheng X, et al. Folic acid protects against hyperuricemia in C57BL/6J mice via ameliorating gut-kidney axis dysfunction. J Agric Food Chem. 2022;70(50):15787-15803.

[211]

Pietzke M, Meiser J, Vazquez A. Formate metabolism in health and disease. Mol Metab. 2020;33:23-37.

RIGHTS & PERMISSIONS

2024 The Authors. Clinical and Translational Medicine published by John Wiley & Sons Australia, Ltd on behalf of Shanghai Institute of Clinical Bioinformatics.

AI Summary AI Mindmap
PDF

233

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/