Spinocerebellar ataxia 27B: A novel, frequent and potentially treatable ataxia

David Pellerin , Matt C. Danzi , Mathilde Renaud , Henry Houlden , Matthis Synofzik , Stephan Zuchner , Bernard Brais

Clinical and Translational Medicine ›› 2024, Vol. 14 ›› Issue (1) : e1504

PDF
Clinical and Translational Medicine ›› 2024, Vol. 14 ›› Issue (1) : e1504 DOI: 10.1002/ctm2.1504
REVIEW

Spinocerebellar ataxia 27B: A novel, frequent and potentially treatable ataxia

Author information +
History +
PDF

Abstract

Hereditary ataxias, especially when presenting sporadically in adulthood, present a particular diagnostic challenge owing to their great clinical and genetic heterogeneity. Currently, up to 75% of such patients remain without a genetic diagnosis. In an era of emerging disease-modifying gene-stratified therapies, the identification of causative alleles has become increasingly important. Over the past few years, the implementation of advanced bioinformatics tools and long-read sequencing has allowed the identification of a number of novel repeat expansion disorders, such as the recently described spinocerebellar ataxia 27B (SCA27B) caused by a (GAA)•(TTC) repeat expansion in intron 1 of the fibroblast growth factor 14 (FGF14) gene. SCA27B is rapidly gaining recognition as one of the most common forms of adult-onset hereditary ataxia, with several studies showing that it accounts for a substantial number (9-61%) of previously undiagnosed cases from different cohorts. First natural history studies and multiple reports have already outlined the progression and core phenotype of this novel disease, which consists of a late-onset slowly progressive pan-cerebellar syndrome that is frequently associated with cerebellar oculomotor signs, such as downbeat nystagmus, and episodic symptoms. Furthermore, preliminary studies in patients with SCA27B have shown promising symptomatic benefits of 4-aminopyridine, an already marketed drug. This review describes the current knowledge of the genetic and molecular basis, epidemiology, clinical features and prospective treatment strategies in SCA27B.

Keywords

4-aminopyridine / cerebellar ataxia / FGF14 / GAA-FGF14 ataxia / genetics / repeat expansion disorder / therapy

Cite this article

Download citation ▾
David Pellerin, Matt C. Danzi, Mathilde Renaud, Henry Houlden, Matthis Synofzik, Stephan Zuchner, Bernard Brais. Spinocerebellar ataxia 27B: A novel, frequent and potentially treatable ataxia. Clinical and Translational Medicine, 2024, 14(1): e1504 DOI:10.1002/ctm2.1504

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Smedley D, Smith KR, Martin A, et al. 100,000 Genomes pilot on rare-disease diagnosis in health care—preliminary report. N Engl J Med. 2021;385:1868-1880.

[2]

Boycott KM, Rath A, Chong JX, et al. International cooperation to enable the diagnosis of all rare genetic diseases. Am J Hum Genet. 2017;100:695-705.

[3]

Rexach J, Lee H, Martinez-Agosto JA, Németh AH, Fogel BL. Clinical application of next-generation sequencing to the practice of neurology. Lancet Neurol. 2019;18:492-503.

[4]

Schuermans N, Verdin H, Ghijsels J, et al. Exome sequencing and multigene panel testing in 1,411 patients with adult-onset neurologic disorders. Neurol Genet. 2023;9:e200071.

[5]

Perlman S. Hereditary Ataxia Overview. In: Adam MP, Mirzaa GM, Pagon RA, Wallace SE, Bean LJH, Gripp KW, Amemiya A, eds. GeneReviews(®).University of Washington, Seattle; 1993.

[6]

Ngo KJ, Rexach JE, Lee H, et al. A diagnostic ceiling for exome sequencing in cerebellar ataxia and related neurological disorders. Hum Mutat. 2020;41:487-501.

[7]

Galatolo D, Tessa A, Filla A, Santorelli FM. Clinical application of next generation sequencing in hereditary spinocerebellar ataxia: increasing the diagnostic yield and broadening the ataxia-spasticity spectrum. A retrospective analysis. Neurogenetics. 2018;19:1-8.

[8]

Giordano I, Harmuth F, Jacobi H, et al. Clinical and genetic characteristics of sporadic adult-onset degenerative ataxia. Neurology. 2017;89:1043-1049.

[9]

Bogdan T, Wirth T, Iosif A, et al. Unravelling the etiology of sporadic late-onset cerebellar ataxia in a cohort of 205 patients: a prospective study. J Neurol. 2022;269:6354-6365.

[10]

da Graça FF, Peluzzo TM, Bonadia LC, et al. Diagnostic yield of whole exome sequencing for adults with ataxia: a Brazilian perspective. Cerebellum. 2022;21:49-54.

[11]

Mahmoud M, Gobet N, Cruz-Dávalos DI, Mounier N, Dessimoz C, Sedlazeck FJ. Structural variant calling: the long and the short of it. Genome Biol. 2019;20:246.

[12]

Bahlo M, Bennett MF, Degorski P, Tankard RM, Delatycki MB, Lockhart PJ. Recent advances in the detection of repeat expansions with short-read next-generation sequencing. F1000Research. 2018;7:F1000Faculty Rev-736.

[13]

Depienne C, Mandel JL. 30 years of repeat expansion disorders: what have we learned and what are the remaining challenges? Am J Hum Genet. 2021;108:764-785.

[14]

Klockgether T, Ashizawa T, Brais B, et al. Paving the way toward meaningful trials in ataxias: an ataxia global initiative perspective. Mov Disord. 2022;37:1125-1130.

[15]

Vázquez-Mojena Y, León-Arcia K, González-Zaldivar Y, Rodríguez-Labrada R, Velázquez-Pérez L. Gene therapy for polyglutamine spinocerebellar ataxias: advances, challenges, and perspectives. Mov Disord. 2021;36:2731-2744.

[16]

Synofzik M, Puccio H, Mochel F, Schöls L. Autosomal recessive cerebellar ataxias: paving the way toward targeted molecular therapies. Neuron. 2019;101:560-583.

[17]

Mantere T, Kersten S, Hoischen A. Long-read sequencing emerging in medical genetics. Front Genet. 2019;10:426.

[18]

Su Y, Fan L, Shi C, et al. Deciphering neurodegenerative diseases using long-read sequencing. Neurology. 2021;97:423-433.

[19]

Cortese A, Simone R, Sullivan R, et al. Biallelic expansion of an intronic repeat in RFC1 is a common cause of late-onset ataxia. Nat Genet. 2019;51:649-658.

[20]

Rafehi H, Szmulewicz DJ, Bennett MF, et al. Bioinformatics-based identification of expanded repeats: a non-reference intronic pentamer expansion in RFC1 causes CANVAS. Am J Hum Genet. 2019;105:151-165.

[21]

Pellerin D, Danzi MC, Wilke C, et al. Deep intronic FGF14 GAA repeat expansion in late-onset cerebellar ataxia. N Engl J Med. 2023;388:128-141.

[22]

Rafehi H, Read J, Szmulewicz DJ, et al. An intronic GAA repeat expansion in FGF14 causes the autosomal-dominant adult-onset ataxia SCA27B/ATX-FGF14. Am J Hum Genet. 2023;110:1018.

[23]

Hengel H, Pellerin D, Wilke C, et al. As frequent as polyglutamine spinocerebellar ataxias: sCA27B in a large german autosomal dominant ataxia cohort. Mov Disord. 2023;38:1557-1558.

[24]

van Swieten JC, Brusse E, de Graaf BM, et al. A mutation in the fibroblast growth factor 14 gene is associated with autosomal dominant cerebellar ataxia [corrected]. Am J Hum Genet. 2003;72:191-199.

[25]

Dalski A, Atici J, Kreuz FR, Hellenbroich Y, Schwinger E, Zühlke C. Mutation analysis in the fibroblast growth factor 14 gene: frameshift mutation and polymorphisms in patients with inherited ataxias. Eur J Hum Genet. 2005;13:118-120.

[26]

Piarroux J, Riant F, Humbertclaude V, et al. FGF14-related episodic ataxia: delineating the phenotype of episodic ataxia type 9. Ann Clin Transl Neurol. 2020;7:565-572.

[27]

Wang Q, Bardgett ME, Wong M, et al. Ataxia and paroxysmal dyskinesia in mice lacking axonally transported FGF14. Neuron. 2002;35:25-38.

[28]

Brais B, Pellerin D, Danzi MC. Deep intronic FGF14 GAA repeat expansion in late-onset cerebellar ataxia. Reply. N Engl J Med. 2023;388:e70.

[29]

Zeng YH, Gan SR, Chen WJ. Deep intronic FGF14 GAA repeat expansion in late-onset cerebellar ataxia. N Engl J Med. 2023;388:e70.

[30]

Wilke C, Pellerin D, Mengel D, et al. GAA-FGF14 ataxia (SCA27B): phenotypic profile, natural history progression and 4-aminopyridine treatment response. Brain. 2023;146:4144-4157.

[31]

Pellerin D, Heindl F, Wilke C, et al. Intronic FGF14 GAA repeat expansions are a common cause of downbeat nystagmus syndromes: frequency, phenotypic profile, and 4-aminopyridine treatment response. medRxiv. 2023. 2023.2007.2030.23293380.

[32]

Pellerin D, Gobbo GD, Couse M, et al. A common flanking variant is associated with enhanced meiotic stability of the FGF14-SCA27B locus. Biorxiv. 2023. 2023.2005.2011.540430.

[33]

Saffie Awad P, Lohmann K, Hirmas Y, et al. Shaking up ataxia: fGF14 and RFC1 repeat expansions in affected and unaffected members of a Chilean family. Mov Disord. 2023;38:1107-1109.

[34]

Pellerin D, Iruzubieta P, Tekgül Ş, et al. Non-GAA repeat expansions in FGF14 are likely not pathogenic-reply to: “Shaking up ataxia: fGF14 and RFC1 repeat expansions in affected and unaffected members of a chilean family”. Mov Disord. 2023;38:1575-1577.

[35]

Iruzubieta P, Pellerin D, Bergareche A, et al. Frequency and phenotypic spectrum of spinocerebellar ataxia 27B and other genetic ataxias in a Spanish cohort of late-onset cerebellar ataxia. Eur J Neurol. 2023;30:3828-3833.

[36]

Ruano L, Melo C, Silva MC, Coutinho P. The global epidemiology of hereditary ataxia and spastic paraplegia: a systematic review of prevalence studies. Neuroepidemiology. 2014;42:174-183.

[37]

Muzaimi MB, Thomas J, Palmer-Smith S, et al. Population based study of late onset cerebellar ataxia in south east Wales. J Neurol Neurosurg Psychiatry. 2004;75:1129-1134.

[38]

Leone M, Bottacchi E, D'Alessandro G, Kustermann S. Hereditary ataxias and paraplegias in Valle d'Aosta, Italy: a study of prevalence and disability. Acta Neurol Scand. 1995;91:183-187.

[39]

Polo JM, Calleja J, Combarros O, Berciano J. Hereditary ataxias and paraplegias in Cantabria, Spain. An epidemiological and clinical study. Brain. 1991;114(2):855-866. Pt.

[40]

Tsuji S, Onodera O, Goto J, Nishizawa M. Sporadic ataxias in Japan-a population-based epidemiological study. Cerebellum. 2008;7:189-197.

[41]

Bonnet C, Pellerin D, Roth V, et al. Optimized testing strategy for the diagnosis of GAA-FGF14 ataxia/spinocerebellar ataxia 27B. Sci Rep. 2023;13:9737.

[42]

Wirth T, Clément G, Delvallée C, et al. Natural history and phenotypic spectrum of GAA-FGF14 sporadic late-onset cerebellar ataxia (SCA27B). Mov Disord. 2023;38:1950-1956.

[43]

Novis LE, Frezatti RS, Pellerin D, et al. Frequency of GAA-FGF14 ataxia in a large cohort of Brazilian patients with unsolved adult-onset cerebellar ataxia. Neurology Genetics. 2023;9:e2000094.

[44]

Mizushima K, Shibata Y, Shirai S, Matsushima M, Miyatake S, Iwata I, Yaguchi H, Matsumoto N, & Yabe I Prevalence of repeat expansions causing autosomal dominant spinocerebellar ataxias in Hokkaido, the northernmost island of Japan. Journal of human genetics. 2023.

[45]

Ando M, Higuchi Y, Yuan J, et al. Clinical variability associated with intronic FGF14 GAA repeat expansion in Japan. Ann Clin Transl Neurol. 2023.

[46]

Alshimemeri S, Abo Alsamh D, Zhou L, et al. Demographics and clinical characteristics of autosomal dominant spinocerebellar ataxia in Canada. Mov Disord Clin Pract. 2023;10:440-451.

[47]

Scriver CR. Human genetics: lessons from Quebec populations. Annu Rev Genomics Hum Genet. 2001;2:69-101.

[48]

Jacobi H, du Montcel ST, Bauer P, et al. Long-term disease progression in spinocerebellar ataxia types 1, 2, 3, and 6: a longitudinal cohort study. Lancet Neurol. 2015;14:1101-1108.

[49]

Tezenas du Montcel S, Durr A, Rakowicz M, et al. Prediction of the age at onset in spinocerebellar ataxia type 1, 2, 3 and 6. J Med Genet. 2014;51:479-486.

[50]

Ashton C, Indelicato E, Pellerin D, Clément G, Danzi MC, Dicaire MJ, Bonnet C, Houlden H., Züchner S, Synofzik M, Lamont PJ, Renaud M, Boesch S, & Brais B. Spinocerebellar ataxia 27B: episodic symptoms and acetazolamide response in 34 patients. Brain communications. 2023:5(5), fcad239.

[51]

Ashton C, Indelicato E, Pellerin D, et al. Spinocerebellar ataxia 27B: episodic symptoms and acetazolamide response in 34 patients. Brain Commun. 2023;5(5):fcad239.

[52]

Seemann J, Traschütz A, Ilg W, Synofzik M. 4-Aminopyridine improves real-life gait performance in SCA27B on a single-subject level: a prospective n-of-1 treatment experience. J Neurol. 2023;270:5629-5634.

[53]

Yabe I, Sasaki H, Takeichi N, et al. Positional vertigo and macroscopic downbeat positioning nystagmus in spinocerebellar ataxia type 6 (SCA6). J Neurol. 2003;250:440-443.

[54]

Globas C, du Montcel ST, Baliko L, et al. Early symptoms in spinocerebellar ataxia type 1, 2, 3, and 6. Mov Disord. 2008;23:2232-2238.

[55]

Borsche M, Thomsen M, Szmulewicz DJ, et al. Bilateral vestibulopathy in RFC1-positive CANVAS is distinctly different compared to FGF14-linked spinocerebellar ataxia 27B. J Neurol. 2023.

[56]

Currò R, Salvalaggio A, Tozza S, et al. RFC1 expansions are a common cause of idiopathic sensory neuropathy. Brain. 2021;144:1542-1550.

[57]

Huin V, Coarelli G, Guemy C, et al. Motor neuron pathology in CANVAS due to RFC1 expansions. Brain. 2022;145:2121-2132.

[58]

Traschütz A, Cortese A, Reich S, et al. Natural history, phenotypic spectrum, and discriminative features of multisystemic RFC1 disease. Neurology. 2021;96:e1369-e1382.

[59]

Hadjivassiliou M, Currò R, Beauchamp N, Dominik N, Grunewald RA, Shanmugarajah P, Zis P, Hoggard N, & Cortese A. Can CANVAS due to RFC1 biallelic expansions present with pure ataxia? Journal of neurology, neurosurgery, and psychiatry. 2023:jnnp-2023-331381. Advance online publication.

[60]

Synofzik M, Schüle R. Overcoming the divide between ataxias and spastic paraplegias: shared phenotypes, genes, and pathways. Mov Disord. 2017;32:332-345.

[61]

Coarelli G, Wirth T, Tranchant C, Koenig M, Durr A, Anheim M. The inherited cerebellar ataxias: an update. J Neurol. 2023;270:208-222.

[62]

Poewe W, Stankovic I, Halliday G, et al. Multiple system atrophy. Nat Rev Dis Primers. 2022;8:56.

[63]

Fanciulli A, Wenning GK. Multiple-system atrophy. N Engl J Med. 2015;372:249-263.

[64]

Wenning GK, Stankovic I, Vignatelli L, et al. The movement disorder society criteria for the diagnosis of multiple system atrophy. Mov Disord. 2022;37:1131-1148.

[65]

Casey HL, Gomez CM. Spinocerebellar ataxia type 6. In: Adam MP, Feldman J, Mirzaa GM, eds. GeneReviews(®).University of Washington, Seattle.

[66]

Copyright © 1993-2023, University of Washington, Seattle. GeneReviews is a registered trademark of the University of Washington, Seattle. All rights reserved., 1993.

[67]

Takahashi H, Ishikawa K, Tsutsumi T, et al. A clinical and genetic study in a large cohort of patients with spinocerebellar ataxia type 6. J Hum Genet. 2004;49:256-264.

[68]

Gomez CM, Thompson RM, Gammack JT, et al. Spinocerebellar ataxia type 6: gaze-evoked and vertical nystagmus, Purkinje cell degeneration, and variable age of onset. Ann Neurol. 1997;42:933-950.

[69]

Shirai S, Mizushima K, Fujiwara K, et al. Case series: downbeat nystagmus in SCA27B. J Neurol Sci. 2023;454:120849.

[70]

Butteriss D, Chinnery P, Birchall D. Radiological characterization of spinocerebellar ataxia type 6. Br J Radiol. 2005;78:694-696.

[71]

Imbrici P, Eunson LH, Graves TD, et al. Late-onset episodic ataxia type 2 due to an in-frame insertion in CACNA1A. Neurology. 2005;65:944-946.

[72]

Baloh RW. Episodic ataxias 1 and 2. Handb Clin Neurol. 2012;103:595-602.

[73]

Nachbauer W, Nocker M, Karner E, et al. Episodic ataxia type 2: phenotype characteristics of a novel CACNA1A mutation and review of the literature. J Neurol. 2014;261:983-991.

[74]

Jen JC, Wan J. Episodic ataxias. Handb Clin Neurol. 2018;155:205-215.

[75]

Jen J, Kim GW, Baloh RW. Clinical spectrum of episodic ataxia type 2. Neurology. 2004;62:17-22.

[76]

Hassan A. Episodic ataxias: primary and secondary etiologies, treatment, and classification approaches. Tremor Other Hyperkinet Mov (N Y). 2023;13:9.

[77]

Muth C, Teufel J, Schöls L, et al. Fampridine and acetazolamide in EA2 and related familial EA: a prospective randomized placebo-controlled trial. Neurol Clin Pract. 2021;11:e438-e446.

[78]

Koeppen AH. The pathogenesis of spinocerebellar ataxia. Cerebellum. 2005;4:62-73.

[79]

Deistung A, Jäschke D, Draganova R, et al. Quantitative susceptibility mapping reveals alterations of dentate nuclei in common types of degenerative cerebellar ataxias. Brain Commun. 2022;4:fcab306.

[80]

Sonnen JA, Santa Cruz K, Hemmy LS, et al. Ecology of the aging human brain. Arch Neurol. 2011;68:1049-1056.

[81]

Beach TG, Malek-Ahmadi M. Alzheimer's disease neuropathological comorbidities are common in the younger-old. J Alzheimer's Dis. 2021;79:389-400.

[82]

Brenowitz WD, Keene CD, Hawes SE, et al. Alzheimer's disease neuropathologic change, Lewy body disease, and vascular brain injury in clinic- and community-based samples. Neurobiol Aging. 2017;53:83-92.

[83]

Hou Y, Dan X, Babbar M, et al. Ageing as a risk factor for neurodegenerative disease. Nat Rev Neurol. 2019;15:565-581.

[84]

Mullard A. 2023:22(4)258. FDA approves first Friedreich's ataxia drug. Nature reviews Drug discovery.

[85]

Zesiewicz TA, Wilmot G, Kuo SH, et al. Comprehensive systematic review summary: treatment of cerebellar motor dysfunction and ataxia: report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology. Neurology. 2018;90:464-471.

[86]

Strupp M, Kalla R, Claassen J, et al. A randomized trial of 4-aminopyridine in EA2 and related familial episodic ataxias. Neurology. 2011;77:269-275.

[87]

Castiglia SF, Trabassi D, Tatarelli A, et al. Identification of gait unbalance and fallers among subjects with cerebellar ataxia by a set of trunk acceleration-derived indices of gait. Cerebellum. 2023;22:46-58.

[88]

Claassen J, Spiegel R, Kalla R, et al. A randomised double-blind, cross-over trial of 4-aminopyridine for downbeat nystagmus-effects on slowphase eye velocity, postural stability, locomotion and symptoms. J Neurol Neurosurg Psychiatry. 2013;84:1392-1399.

[89]

Bosch MK, Carrasquillo Y, Ransdell JL, Kanakamedala A, Ornitz DM, Nerbonne JM. Intracellular FGF14 (iFGF14) is required for spontaneous and evoked firing in cerebellar purkinje neurons and for motor coordination and balance. J Neurosci. 2015;35:6752-6769.

[90]

Shakkottai VG, Xiao M, Xu L, et al. FGF14 regulates the intrinsic excitability of cerebellar Purkinje neurons. Neurobiol Dis. 2009;33:81-88.

[91]

Alviña K, Khodakhah K. The therapeutic mode of action of 4-aminopyridine in cerebellar ataxia. J Neurosci. 2010;30:7258-7268.

[92]

Jayabal S, Chang HH, Cullen KE, Watt AJ. 4-aminopyridine reverses ataxia and cerebellar firing deficiency in a mouse model of spinocerebellar ataxia type 6. Sci Rep. 2016;6:29489.

[93]

Hourez R, Servais L, Orduz D, et al. Aminopyridines correct early dysfunction and delay neurodegeneration in a mouse model of spinocerebellar ataxia type 1. J Neurosci. 2011;31:11795-11807.

[94]

Dolzhenko E, van Vugt J, Shaw RJ, et al. Detection of long repeat expansions from PCR-free whole-genome sequence data. Genome Res. 2017;27:1895-1903.

[95]

Rabanal FA, Gräff M, Lanz C, et al. Pushing the limits of HiFi assemblies reveals centromere diversity between two Arabidopsis thaliana genomes. Nucleic Acids Res. 2022;50:12309-12327.

[96]

Krishnakumar R, Sinha A, Bird SW, et al. Systematic and stochastic influences on the performance of the MinION nanopore sequencer across a range of nucleotide bias. Sci Rep. 2018;8:3159.

[97]

Xiao M, Bosch MK, Nerbonne JM, Ornitz DM. FGF14 localization and organization of the axon initial segment. Mol Cell Neurosci. 2013;56:393-403.

[98]

Di Re J, Wadsworth PA, Laezza F. Intracellular fibroblast growth factor 14: emerging risk factor for brain disorders. Front Cell Neurosci. 2017;11:103.

[99]

Lou JY, Laezza F, Gerber BR, et al. Fibroblast growth factor 14 is an intracellular modulator of voltage-gated sodium channels. J Physiol. 2005;569:179-193.

[100]

Yan H, Pablo JL, Wang C, Pitt GS. FGF14 modulates resurgent sodium current in mouse cerebellar Purkinje neurons. eLife. 2014;3:e04193.

[101]

Sakamoto N, Chastain PD, Parniewski P, et al. Sticky DNA: self-association properties of long GAA.TTC repeats in R.R.Y triplex structures from Friedreich's ataxia. Mol Cell. 1999;3:465-475.

[102]

Sakamoto N, Larson JE, Iyer RR, Montermini L, Pandolfo M, Wells RD. GGA*TCC-interrupted triplets in long GAA*TTC repeats inhibit the formation of triplex and sticky DNA structures, alleviate transcription inhibition, and reduce genetic instabilities. J Biol Chem. 2001;276:27178-27187.

[103]

Ohshima K, Montermini L, Wells RD, Pandolfo M. Inhibitory effects of expanded GAA.TTC triplet repeats from intron I of the Friedreich ataxia gene on transcription and replication in vivo. J Biol Chem. 1998;273:14588-14595.

[104]

Al-Mahdawi S, Pinto RM, Ismail O, et al. The Friedreich ataxia GAA repeat expansion mutation induces comparable epigenetic changes in human and transgenic mouse brain and heart tissues. Hum Mol Genet. 2008;17:735-746.

[105]

Soragni E, Herman D, Dent SY, Gottesfeld JM, Wells RD, Napierala M. Long intronic GAA*TTC repeats induce epigenetic changes and reporter gene silencing in a molecular model of Friedreich ataxia. Nucleic Acids Res. 2008;36:6056-6065.

[106]

Greene E, Mahishi L, Entezam A, Kumari D, Usdin K. Repeat-induced epigenetic changes in intron 1 of the frataxin gene and its consequences in Friedreich ataxia. Nucleic Acids Res. 2007;35:3383-3390.

[107]

Saveliev A, Everett C, Sharpe T, Webster Z, Festenstein R. DNA triplet repeats mediate heterochromatin-protein-1-sensitive variegated gene silencing. Nature. 2003;422:909-913.

[108]

Erwin GS, Grieshop MP, Ali A, et al. Synthetic transcription elongation factors license transcription across repressive chromatin. Science. 2017;358:1617-1622.

RIGHTS & PERMISSIONS

2024 The Authors. Clinical and Translational Medicine published by John Wiley & Sons Australia, Ltd on behalf of Shanghai Institute of Clinical Bioinformatics.

AI Summary AI Mindmap
PDF

211

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/