Significance of stereologically spatiotemporal cells in molecular medicine

Xuanqi Liu , Wanxin Duan , Yuyang Qiu , Ruyi Li , Yuanlin Song , Xiangdong Wang

Clinical and Translational Discovery ›› 2025, Vol. 5 ›› Issue (4) : e70077

PDF
Clinical and Translational Discovery ›› 2025, Vol. 5 ›› Issue (4) : e70077 DOI: 10.1002/ctd2.70077
EDITORIAL

Significance of stereologically spatiotemporal cells in molecular medicine

Author information +
History +
PDF

Cite this article

Download citation ▾
Xuanqi Liu, Wanxin Duan, Yuyang Qiu, Ruyi Li, Yuanlin Song, Xiangdong Wang. Significance of stereologically spatiotemporal cells in molecular medicine. Clinical and Translational Discovery, 2025, 5(4): e70077 DOI:10.1002/ctd2.70077

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Hein MY, Peng D, Todorova V, et al. Global organelle profiling reveals subcellular localization and remodeling at proteome scale. Cell. 2025; 188(4): 1137-1155.e20.

[2]

Martinez-Val A, Bekker-Jensen DB, Steigerwald S, et al. Spatial-proteomics reveals phospho-signaling dynamics at subcellular resolution. Nat Commun. 2021; 12: 7113.

[3]

Wang X, Duan W, Liu X, Fan J. An important step to translate single-cell measurement into clinical practice: stereoscopic cells. Clin Transl Med. 2025; 15:e70304.

[4]

Li KR, Yu PL, Zheng QQ, et al. Spatiotemporal and genetic cell lineage tracing of endodermal organogenesis at single-cell resolution. Cell. 2025; 188(3): 796-813.e24.

[5]

Chen A, Liao S, Cheng M, et al. Spatiotemporal transcriptomic atlas of mouse organogenesis using DNA nanoball-patterned arrays. Cell. 2022; 185(10): 1777-1792.e21.

[6]

Zhao H, Shu L, Qin S, et al. Extensive mutual influences of SMC complexes shape 3D genome folding. Nature. 2025; 640(8058): 543-553.

[7]

Sebastian R, Sun EG, Fedkenheuer M, et al. Mechanism for local attenuation of DNA replication at double-strand breaks. Nature. 2025; 639(8056): 1084-1092.

[8]

Wu H, Zhang J, Jian F, et al. Simultaneous single-cell three-dimensional genome and gene expression profiling uncovers dynamic enhancer connectivity underlying olfactory receptor choice. Nat Methods. 2024; 21(6): 974-982.

[9]

Takei Y, Yang Y, White J, et al. Spatial multi-omics reveals cell-type-specific nuclear compartments. Nature. 2025; 641(8064): 1037-1047.

[10]

Merta H, Gov K, Isogai T, et al. Spatial proteomics of ER tubules reveals CLMN, an ER-actin tether at focal adhesions that promotes cell migration. Cell Rep. 2025; 44(4):115502.

[11]

Wong YC, Ysselstein D, Krainc D. Mitochondria-lysosome contacts regulate mitochondrial fission via RAB7 GTP hydrolysis. Nature. 2018; 554(7692): 382-386.

[12]

Xiao Z, Cui L, Yuan Y, et al. 3D reconstruction of a gastrulating human embryo. Cell. 2024; 187(11): 2855-2874.e19.

[13]

Schott M, León-Periñán D, Splendiani E, et al. Open-ST: high-resolution spatial transcriptomics in 3D. Cell. 2024; 187(15): 3953-3972.e26.

[14]

Yayon N, Kedlian VR, Boehme L, et al. A spatial human thymus cell atlas mapped to a continuous tissue axis. Nature. 2024; 635(8039): 708-718.

[15]

Mathur R, Wang Q, Schupp PG, et al. Glioblastoma evolution and heterogeneity from a 3D whole-tumor perspective. Cell. 2024; 187(2): 446-463.e16.

[16]

Mo CK, Liu J, Chen S, et al. Tumour evolution and microenvironment interactions in 2D and 3D space. Nature. 2024; 634(8036): 1178-1186.

[17]

Liao S, Zhou X, Liu C, et al. Stereo-cell: spatial enhanced resolution single-cell sequencing with high-density DNA nanoball-patterned arrays. Science. 2025.

[18]

Han M, Fu ML, Zhu Y, et al. Programmable control of spatial transcriptome in live cells and neurons. Nature. 2025; 643: 241-251.

[19]

Trendel J, Trendel S, Sha S, et al. The human proteome with direct physical access to DNA. Cell. 2025.

RIGHTS & PERMISSIONS

2025 The Author(s). Clinical and Translational Discovery published by John Wiley & Sons Australia, Ltd on behalf of Shanghai Institute of Clinical Bioinformatics.

AI Summary AI Mindmap
PDF

6

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/