A snapshot of the role of estrogen-regulated divergent non-coding transcripts

Barbara Yang , Melina J. Sedano , Kimberly Diwa , Johnathan Dominguez , Gabriela Boisselier , Alana L. Harrison , Victoria A. Reid , Enrique I. Ramos , Maria V. Jimenez , Laura A. Sanchez-Michael , Shreya Kolli , Jai Patel , Debra Lee , Mahalakshmi Vijayaraghavan , Jessica Chacon , Subramanian Dhandayuthapani , Shrikanth S. Gadad

Clinical and Translational Discovery ›› 2025, Vol. 5 ›› Issue (3) : e70055

PDF
Clinical and Translational Discovery ›› 2025, Vol. 5 ›› Issue (3) : e70055 DOI: 10.1002/ctd2.70055
REVIEW ARTICLE

A snapshot of the role of estrogen-regulated divergent non-coding transcripts

Author information +
History +
PDF

Abstract

Recent high-throughput sequencing technologies have discovered various polymerase II transcribed transcripts. The majority of them are non-protein-coding, understudied and poorly conserved. Non-coding transcripts are categorised based on their location in the genome and the direction in which they are transcribed; these categories classify a non-coding transcript as either antisense, intergenic or divergent. The RNAs belonging to divergent classes consist of two transcripts, transcribed in sense and antisense direction, generated from the same promoter or locus. Multiple environmental and genetic cues can determine the regulation of these transcripts. One of the well-known signalling molecules, estrogen, has been shown to play a vital role in the activation and regulation of divergent transcripts by mediating effects through the estrogen receptors. Emerging studies have shown a strong causative effect between estrogen-regulated divergent transcripts and diseases such as cancer. However, few, viz., lncRNA67, CUPID1 and CUPID2, show a causal relationship with estrogen-dependent biology. This mini-review summarises their role in estrogen-dependent processes that may drive the research to identify novel estrogen-signalling regulators.

Keywords

breast cancer / cancer / estrogen / long non-coding RNAs / signalling

Cite this article

Download citation ▾
Barbara Yang, Melina J. Sedano, Kimberly Diwa, Johnathan Dominguez, Gabriela Boisselier, Alana L. Harrison, Victoria A. Reid, Enrique I. Ramos, Maria V. Jimenez, Laura A. Sanchez-Michael, Shreya Kolli, Jai Patel, Debra Lee, Mahalakshmi Vijayaraghavan, Jessica Chacon, Subramanian Dhandayuthapani, Shrikanth S. Gadad. A snapshot of the role of estrogen-regulated divergent non-coding transcripts. Clinical and Translational Discovery, 2025, 5(3): e70055 DOI:10.1002/ctd2.70055

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Latge G, Poulet C, Bours V, Josse C, Jerusalem G. Natural antisense transcripts: molecular mechanisms and implications in breast cancers. Int J Mol Sci. 2018; 19: 123.

[2]

Hah N, Danko C, Core L, et al. A rapid, extensive, and transient transcriptional response to estrogen signaling in breast cancer cells. Cell. 2011; 145: 622-634.

[3]

Adhikary S, Roy S, Chacon J, Gadad SS, Das C. Implications of enhancer transcription and eRNAs in cancer. Cancer Res. 2021; 81(16): 4174-4182.

[4]

Francis WR, Worheide G. Similar ratios of introns to intergenic sequence across animal genomes. Genome Biol Evol. 2017; 9: 1582-1598.

[5]

Lacadie SA, Ibrahim MM, Gokhale SA, Ohler U. Divergent transcription and epigenetic directionality of human promoters. FEBS J. 2016; 283: 4214-4222.

[6]

Khaitovich P, Kelso J, Franz H, et al. Functionality of intergenic transcription: an evolutionary comparison. PLoS Genet. 2006; 2:e171.

[7]

Ransohoff JD, Wei Y, Khavari PA. The functions and unique features of long intergenic non-coding RNA. Nat Rev Mol Cell Biol. 2018; 19: 143-157.

[8]

Wu X, Sharp PA. Divergent transcription: a driving force for new gene origination? Cell. 2013; 155: 990-996.

[9]

Ors A, Chitsazan AD, Doe AR, et al. Estrogen regulates divergent transcriptional and epigenetic cell states in breast cancer. Nucleic Acids Res. 2022; 50: 11492-11508.

[10]

Yager JD, and Chen JQ, Mitochondrial estrogen receptors new insights into specific functions. Trends in Endocrinology & Metabolism. 2007; 18(3): 89-93.

[11]

Chen JQ, Russo PA, Cooke C, Russo IH, and Russo J. ERβ shifts from mitochondria to nucleus during estrogen-induced neoplastic transformation of human breast epithelial cells and is involved in estrogen-induced synthesis of mitochondrial respiratory chain proteins. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research. 2007; 1773: 1732-1746.

[12]

Moriyama T, Yoneda Y, Oka M, and Yamada M. Transportin-2 plays a critical role in nucleocytoplasmic shuttling of oestrogen receptor-α. Scientific Reports. 2020; 10:(1). doi:https://doi.org/10.1038/s41598-020-75631-3

[13]

Yasar P, Ayaz G, User SD, Gupur G, Muyan M. Molecular mechanism of estrogen‒estrogen receptor signaling. Reprod Med Biol. 2017; 16: 4-20.

[14]

Ikeda K, Horie-Inoue K, Inoue S. Identification of estrogen-responsive genes based on the DNA binding properties of estrogen receptors using high-throughput sequencing technology. Acta Pharmacol Sin. 2015; 36: 24-31.

[15]

Vasquez YM. Estrogen-regulated transcription: mammary gland and uterus. Steroids. 2018; 133: 82-86.

[16]

Hah N, Kraus WL. Hormone-regulated transcriptomes: lessons learned from estrogen signaling pathways in breast cancer cells. Mol Cell Endocrinol. 2014; 382: 652-664.

[17]

Zhang X, Ho SM. Epigenetics meets endocrinology. J Mol Endocrinol. 2011; 46: R11-R32.

[18]

Deroo BJ, Korach KS. Estrogen receptors and human disease. J Clin Invest. 2006; 116: 561-570.

[19]

Fuentes N, Silveyra P. Estrogen receptor signaling mechanisms. Adv Protein Chem Struct Biol. 2019; 116: 135-170.

[20]

Bjornstrom L, Sjoberg M. Mechanisms of estrogen receptor signaling: convergence of genomic and nongenomic actions on target genes. Mol Endocrinol. 2005; 19: 833-842.

[21]

Vasquez YM, Kraus WL. The estrogen-regulated transcriptome: rapid, robust, extensive, and transient. Cham: Humana Press; 2019: 95-127.

[22]

Qiu JJ, Ye L, Ding J, et al. Expression and clinical significance of estrogen-regulated long non-coding RNAs in estrogen receptor alpha-positive ovarian cancer progression. Oncol Rep. 2014; 31: 1613-1622.

[23]

Sedano MJ, Harrison A, Zilaie M, et al. Emerging roles of estrogen-regulated enhancer and long non-coding RNAs. Int J Mol Sci. 2020; 21: 3711.

[24]

Sun M, Gadad SS, Kim DS, Kraus WL. Discovery, annotation, and functional analysis of long noncoding RNAs controlling cell-cycle gene expression and proliferation in breast cancer cells. Mol Cell. 2015; 59: 698-711.

[25]

Arun G, Diermeier SD, Spector DL. Therapeutic targeting of long non-coding RNAs in cancer. Trends Mol Med. 2018; 24: 257-277.

[26]

Choudhari R, Sedano MJ, Harrison AL, et al. Long noncoding RNAs in cancer: from discovery to therapeutic targets. Adv Clin Chem. 2020; 95: 105-147.

[27]

Sun H, Wang G, Peng Y, et al. H19 lncRNA mediates 17beta-estradiol-induced cell proliferation in MCF-7 breast cancer cells. Oncol Rep. 2015; 33: 3045-3052.

[28]

Lottin S, Adriaenssens E, Dupressoir T, et al. Overexpression of an ectopic H19 gene enhances the tumorigenic properties of breast cancer cells. Carcinogenesis. 2002; 23: 1885-1895.

[29]

Wang J, Sun J, Yang F. The role of long non-coding RNA H19 in breast cancer. Oncol Lett. 2020; 19: 7-16.

[30]

Yang M, Lee JH, Zhang Z, et al. Enhancer RNAs mediate estrogen-induced decommissioning of selective enhancers by recruiting ERalpha and its cofactor. Cell Rep. 2020; 31:107803.

[31]

Choudhari R, Yang B, Rotwein P, Gadad SS. Structure and expression of the long noncoding RNA gene MIR503 in humans and non-human primates. Mol Cell Endocrinol. 2020; 510:110819.

[32]

Camacho CV, Choudhari R, Gadad SS. Long noncoding RNAs and cancer, an overview. Steroids. 2018; 133: 93-95.

[33]

Vasquez YM, Nandu TS, Kelleher AM, et al. Genome-wide analysis and functional prediction of the estrogen-regulated transcriptional response in the mouse uterus. Biol Reprod. 2020; 102: 327-338.

[34]

Mathias C, Zambalde EP, Rask P, Gradia DF, de Oliveira JC. Long non-coding RNAs differential expression in breast cancer subtypes: what do we know? Clin Genet. 2019; 95: 558-568.

[35]

Ramos EI, Yang B, Vasquez YM, Lin KY, Choudhari R, Gadad SS. Gene structure, differential exon usage, and expression of the testis long intergenic non-protein coding RNA 1016 in humans reveals isoform-specific roles in controlling biological processes. bioRxiv. 2021.

[36]

Betts JA, Moradi Marjaneh M, Al-Ejeh F, et al. Long noncoding RNAs CUPID1 and CUPID2 mediate breast cancer risk at 11q13 by modulating the response to DNA damage. Am J Hum Genet. 2017; 101: 255-266.

[37]

Fu S, Wang Y, Li H, Chen L, Liu Q. Regulatory networks of LncRNA MALAT-1 in cancer. Cancer Manag Res. 2020; 12: 10181-10198.

[38]

Aiello A, Bacci L, Re A, et al. MALAT1 and HOTAIR long non-coding RNAs play opposite role in estrogen-mediated transcriptional regulation in prostate cancer cells. Sci Rep. 2016; 6:38414.

[39]

Kong Y, Hsieh CH, Alonso LC. ANRIL: a lncRNA at the CDKN2A/B locus with roles in cancer and metabolic disease. Front Endocrinol (Lausanne). 2018; 9: 405.

[40]

Sanchez A, Lhuillier J, Grosjean G, Ayadi L, Maenner S. The long non-coding RNA ANRIL in cancers. Cancers (Basel). 2023; 15: 4160.

[41]

Li Y, Jiang B, Wu X, et al. Long non-coding RNA MIAT is estrogen-responsive and promotes estrogen-induced proliferation in ER-positive breast cancer cells. Biochem Biophys Res Commun. 2018; 503: 45-50.

[42]

Horie K, Takagi K, Takeiwa T, et al. Estrogen-inducible LncRNA BNAT1 functions as a modulator for estrogen receptor signaling in endocrine-resistant breast cancer cells. Cells. 2022; 11: 3610.

[43]

Vennin C, Spruyt N, Dahmani F, et al. H19 non coding RNA-derived miR-675 enhances tumorigenesis and metastasis of breast cancer cells by downregulating c-Cbl and Cbl-b. Oncotarget. 2015; 6: 29209-29223.

[44]

Sun Y, Zhang H, Ma R, et al. ETS-1-activated LINC01016 over-expression promotes tumor progression via suppression of RFFL-mediated DHX9 ubiquitination degradation in breast cancers. Cell Death Dis. 2023; 14: 507.

[45]

Kim DS, Camacho CV, Setlem R, et al. Functional characterization of lncRNA152 as an angiogenesis-inhibiting tumor suppressor in triple-negative breast cancers. Mol Cancer Res. 2022; 20: 1623-1635.

[46]

Turnbull C, Ahmed S, Morrison J, et al. Genome-wide association study identifies five new breast cancer susceptibility loci. Nat Genet. 2010; 42: 504-507.

[47]

Lambrechts D, Truong T, Justenhoven C, et al. 11q13 is a susceptibility locus for hormone receptor positive breast cancer. Hum Mutat. 2012; 33: 1123-1132.

[48]

French JD, Ghoussaini M, Edwards S, et al. Functional variants at the 11q13 risk locus for breast cancer regulate cyclin D1 expression through long-range enhancers. Am J Hum Genet. 2013; 92: 489-503.

[49]

Warburton AJ, Boone DN. Insights from global analyses of long noncoding RNAs in breast cancer. Curr Pathobiol Rep. 2017; 5: 23-34.

RIGHTS & PERMISSIONS

2025 The Author(s). Clinical and Translational Discovery published by John Wiley & Sons Australia, Ltd on behalf of Shanghai Institute of Clinical Bioinformatics.

AI Summary AI Mindmap
PDF

5

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/