Structural insights into retinoic acid receptor activation and selective modulators

Yining Song , Wenrui Zhao , Xuan Huang , Lai Wei , Jingyi Han , Jiayun Hou , Min Li , Xin Cao

Clinical and Translational Discovery ›› 2025, Vol. 5 ›› Issue (2) : e70043

PDF
Clinical and Translational Discovery ›› 2025, Vol. 5 ›› Issue (2) : e70043 DOI: 10.1002/ctd2.70043
REVIEW ARTICLE

Structural insights into retinoic acid receptor activation and selective modulators

Author information +
History +
PDF

Abstract

Retinoic acid receptors (RARs), including RARα, RARβ and RARγ, serve as essential nuclear receptors that act as transcription factors activated by ligands. They predominantly regulate gene expression and affect various biological processes, including differentiation. Their dysregulation is implicated in various cancers and other diseases, notably acute promyelocytic leukaemia (APL), where the promyelocytic leukemia (PML)–RARα fusion protein disrupts normal granulocyte maturation. All-trans retinoic acid, which promotes the degradation of this fusion protein is a key therapeutic agent for APL and is also involved in the treatment of other diseases. Recently, various selective RAR modulators targeting specific RAR subtypes have been developed, which show promise in treating cancer and other diseases. The structural biology of RARs reveals how ligand binding induces conformational changes that facilitate co-activator recruitment, thereby modulating transcription. This review explores the crystal structures of RARs in various activation states, detailing RARs’ interactions with retinoid X receptors, ligands, DNA and co-regulators, and emphasises the importance of understanding these mechanisms for the rational design of new RAR-targeted therapies. The potential for developing selective RARmodulators is highlighted, along with the need for comprehensive structural data to enhance our understanding of RAR functions in disease contexts. Future research directions include utilising advanced imaging techniques and artificial intelligence-driven predictions to elucidate the dynamics of RAR complexes, ultimately aiming to translate structural insights into clinical applications for various diseases.

Keywords

all-trans retinoic acid (ATRA) / nuclear receptors / receptor activation / retinoic acid receptors (RARs) / selective RAR modulators / structural biology

Cite this article

Download citation ▾
Yining Song, Wenrui Zhao, Xuan Huang, Lai Wei, Jingyi Han, Jiayun Hou, Min Li, Xin Cao. Structural insights into retinoic acid receptor activation and selective modulators. Clinical and Translational Discovery, 2025, 5(2): e70043 DOI:10.1002/ctd2.70043

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

SaeedS, LogieC, StunnenbergHG, MartensJHA. Genome-wide functions of PML–RARα in acute promyelocytic leukaemia. Br J Cancer. 2011;104(4):554-558.

[2]

ZhuJ, GianniM, KopfE, et al. Retinoic acid induces proteasome-dependent degradation of retinoic acid receptor alpha (RARalpha) and oncogenic RARalpha fusion proteins. Proc Natl Acad Sci U S A. 1999;96(26):14807-14812.

[3]

BleulT, Rühl R, BulashevskaS, KarakhanovaS, WernerJ, BazhinAV. Reduced retinoids and retinoid receptors’ expression in pancreatic cancer: a link to patient survival. Mol Carcinog. 2015;54(9):870-879.

[4]

YanTD, WuH, ZhangHP, et al. Oncogenic potential of retinoic acid receptor-gamma in hepatocellular carcinoma. Cancer Res. 2010;70(6):2285-2295.

[5]

QiuY, ZhaoW. Precise diagnosis and treatment for peripheral T-cell lymphomas: from pathogenic mechanisms to innovative approaches. Innov Med. 2024;2(1):100048.

[6]

Mendoza-ParraMA, WaliaM, SankarM, Gronemeyer H. Dissecting the retinoid-induced differentiation of F9 embryonal stem cells by integrative genomics. Mol Syst Biol. 2011;7:538.

[7]

LuX, ChengL, YangC, Huang J, ChenX. Crosstalk between bladder cancer and the tumor microenvironment: molecular mechanisms and targeted therapy. Innov Med. 2024;2(4):100094.

[8]

BrownG, PetrieK. The RARγ oncogene: an Achilles heel for some cancers. Int J Mol Sci. 2021;22(7):3632.

[9]

DuesterG. Keeping an eye on retinoic acid signaling during eye development. Chem Biol Interact. 2009;178(1-3):178-181.

[10]

HughesNE, Bleisch TJ, JonesSA, et al. Identification of potent and selective retinoic acid receptor gamma (RARgamma) antagonists for the treatment of osteoarthritis pain using structure based drug design. Bioorg Med Chem Lett. 2016;26(14):3274-3277.

[11]

PanJ, Guleria RS, ZhuS, BakerKM. Molecular mechanisms of retinoid receptors in diabetes-induced cardiac remodeling. J Clin Med. 2014;3(2):566-594.

[12]

ZhaoW, LiS, ChenR, et al. RXR signaling targeted cancer therapy. Innov Life. 2023;1(1):100014.

[13]

McKeownMR, CorcesMR, EatonML, et al. Superenhancer analysis defines novel epigenomic subtypes of non-APL AML, including an RARα dependency targetable by SY-1425, a potent and selective RARα agonist. Cancer Discov. 2017;7(10):1136-1153.

[14]

SchlenkRF, Fröhling S, HartmannF, et al. Phase III study of all-trans retinoic acid in previously untreated patients 61 years or older with acute myeloid leukemia. Leukemia. 2004;18(11):1798-1803.

[15]

de ThéH. Differentiation therapy revisited. Nat Rev Cancer. 2018;18(2):117-127.

[16]

QinXY, SuzukiH, HondaM, et al. Prevention of hepatocellular carcinoma by targeting MYCN-positive liver cancer stem cells with acyclic retinoid. Proc Natl Acad Sci U S A. 2018;115(19):4969-4974.

[17]

QiF, QinW, ZhangY, et al. Sulfarotene, a synthetic retinoid, overcomes stemness and sorafenib resistance of hepatocellular carcinoma via suppressing SOS2-RAS pathway. J Exp Clin Cancer Res. 2021;40(1):280.

[18]

DuX, QiZ, ChenS, et al. Synthetic retinoid sulfarotene selectively inhibits tumor-repopulating cells of intrahepatic cholangiocarcinoma via disrupting cytoskeleton by P-selectin/PSGL1 N-glycosylation blockage. Adv Sci (Weinh). 2025;12(3):e2407519.

[19]

ChenJ, CaoX, AnQ, et al. Inhibition of cancer stem cell like cells by a synthetic retinoid. Nat Commun. 2018;9(1):1406.

[20]

ZhangY, DongQ, AnQ, et al. Synthetic retinoid kills drug-resistant cancer stem cells via inducing RARγ-translocation-mediated tension reduction and chromatin decondensation. Adv Sci. 2022;9(31):2203173.

[21]

ChenR, HuangX, HouJ, et al. ZSH-2208:a novel retinoid with potent anti-tumour effects on ESCC stem cells via RARγ-TNFAIP3 axis. Clin Transl Med. 2025;15(1):e70148.

[22]

ShimonoK, TungWE, MacolinoC, et al. Potent inhibition of heterotopic ossification by nuclear retinoic acid receptor-γ agonists. Nat Med. 2011;17(4):454-460.

[23]

ScottLJ. Trifarotene: first approval. Drugs. 2019;79(17):1905-1909.

[24]

ThoreauE, Arlabosse JM, Bouix-PeterC, et al. Structure-based design of Trifarotene (CD5789), a potent and selective RARγ agonist for the treatment of acne. Bioorg Med Chem Lett. 2018;28(10):1736-1741.

[25]

EvansRM, Mangelsdorf DJ. Nuclear receptors, RXR, and the big bang. Cell. 2014;157(1):255-266.

[26]

ChambonP. A decade of molecular biology of retinoic acid receptors. FASEB J. 1996;10(9):940-954.

[27]

PowałaK, Żołek T, BrownG, KutnerA. Molecular interactions of selective agonists and antagonists with the retinoic acid receptor γ. Int J Mol Sci. 2024;25(12):6568.

[28]

di MasiA, Leboffe L, De MarinisE, et al. Retinoic acid receptors: from molecular mechanisms to cancer therapy. Mol Aspects Med. 2015;41:1-115.

[29]

GlassCK, Rosenfeld MG. The coregulator exchange in transcriptional functions of nuclear receptors. Genes Dev. 2000;14(2):121-141.

[30]

PerissiV, JepsenK, GlassCK, Rosenfeld MG. Deconstructing repression: evolving models of co-repressor action. Nat Rev Genet. 2010;11(2):109-123.

[31]

CunninghamTJ, Duester G. Mechanisms of retinoic acid signalling and its roles in organ and limb development. Nat Rev Mol Cell Biol. 2015;16(2):110-123.

[32]

ZhaoX, Duester G. Effect of retinoic acid signaling on Wnt/beta-catenin and FGF signaling during body axis extension. Gene Expr Patterns. 2009;9(6):430-435.

[33]

HuangD, ChenSW, GudasLJ. Analysis of two distinct retinoic acid response elements in the homeobox gene Hoxb1 in transgenic mice. Dev Dyn. 2002;223(3):353-370.

[34]

DuesterG. Retinoic acid synthesis and signaling during early organogenesis. Cell. 2008;134(6):921-931.

[35]

KumarS, Duester G. Retinoic acid signaling in perioptic mesenchyme represses Wnt signaling via induction of Pitx2 and Dkk2. Dev Biol. 2010;340(1):67-74.

[36]

SamadTA, KrezelW, ChambonP, Borrelli E. Regulation of dopaminergic pathways by retinoids: activation of the D2 receptor promoter by members of the retinoic acid receptor–retinoid X receptor family. Proc Natl Acad Sci U S A. 1997;94(26):14349-14354.

[37]

ChatziC, BradeT, DuesterG. Retinoic acid functions as a key GABAergic differentiation signal in the basal ganglia. PLoS Biol. 2011;9(4):e1000609.

[38]

RaverdeauM, Gely-Pernot A, FéretB, et al. Retinoic acid induces Sertoli cell paracrine signals for spermatogonia differentiation but cell autonomously drives spermatocyte meiosis. Proc Natl Acad Sci U S A. 2012;109(41):16582-16587.

[39]

MerkiE, ZamoraM, RayaA, et al. Epicardial retinoid X receptor alpha is required for myocardial growth and coronary artery formation. Proc Natl Acad Sci U S A. 2005;102(51):18455-18460.

[40]

BradeT, KumarS, CunninghamTJ, et al. Retinoic acid stimulates myocardial expansion by induction of hepatic erythropoietin which activates epicardial Igf2. Development. 2011;138(1):139-148.

[41]

OszJ, McEwenAG, BourguetM, et al. Structural basis for DNA recognition and allosteric control of the retinoic acid receptors RAR–RXR. Nucleic Acids Res. 2020;48(17):9969-9985.

[42]

BourguetW, VivatV, WurtzJM, Chambon P, GronemeyerH, MorasD. Crystal structure of a heterodimeric complex of RAR and RXR ligand-binding domains. Mol Cell. 2000;5(2):289-298.

[43]

PogenbergV, Guichou JF, Vivat-HannahV, et al. Characterization of the interaction between retinoic acid receptor/retinoid X receptor (RAR/RXR) heterodimers and transcriptional coactivators through structural and fluorescence anisotropy studies. J Biol Chem. 2005;280(2):1625-1633.

[44]

ChenJY, Clifford J, ZusiC, et al. Two distinct actions of retinoid-receptor ligands. Nature. 1996;382(6594):819-822.

[45]

GermainP, IyerJ, ZechelC, Gronemeyer H. Co-regulator recruitment and the mechanism of retinoic acid receptor synergy. Nature. 2002;415(6868):187-192.

[46]

MargeatE, PoujolN, BoulahtoufA, et al. The human estrogen receptor alpha dimer binds a single SRC-1 coactivator molecule with an affinity dictated by agonist structure. J Mol Biol. 2001;306(3):433-442.

[47]

NolteRT, WiselyGB, WestinS, et al. Ligand binding and co-activator assembly of the peroxisome proliferator-activated receptor-gamma. Nature. 1998;395(6698):137-143.

[48]

SatoY, Ramalanjaona N, HuetT, et al. The “phantom effect” of the rexinoid LG100754:structural and functional insights. PLoS One. 2010;5(11):e15119.

[49]

HaffezH, Chisholm DR, ValentineR, PohlE, Redfern C, WhitingA. The molecular basis of the interactions between synthetic retinoic acid analogues and the retinoic acid receptors. Medchemcomm. 2017;8(3):578-592.

[50]

RenaudJ-P, RochelN, RuffM, et al. Crystal structure of the RAR-γ ligand-binding domain bound to all-trans retinoic acid. Nature. 1995;378(6558):681-689.

[51]

KlaholzBP, RenaudJP, MitschlerA, et al. Conformational adaptation of agonists to the human nuclear receptor RAR gamma. Nat Struct Biol. 1998;5(3):199-202.

[52]

KurokawaR, DiRenzo J, BoehmM, et al. Regulation of retinoid signalling by receptor polarity and allosteric control of ligand binding. Nature. 1994;371(6497):528-531.

[53]

ZechelC, ShenXQ, ChenJY, Chen ZP, ChambonP, GronemeyerH. The dimerization interfaces formed between the DNA binding domains of RXR, RAR and TR determine the binding specificity and polarity of the full-length receptors to direct repeats. EMBO J. 1994;13(6):1425-1433.

[54]

ZechelC, ShenXQ, ChambonP, Gronemeyer H. Dimerization interfaces formed between the DNA binding domains determine the cooperative binding of RXR/RAR and RXR/TR heterodimers to DR5 and DR4 elements. EMBO J. 1994;13(6):1414-1424.

[55]

BichC, BovetC, RochelN, et al. Detection of nucleic acid-nuclear hormone receptor complexes with mass spectrometry. J Am Soc Mass Spectrom. 2010;21(4):635-645.

[56]

MoutierE, YeT, ChoukrallahMA, et al. Retinoic acid receptors recognize the mouse genome through binding elements with diverse spacing and topology. J Biol Chem. 2012;287(31):26328-26341.

[57]

ChatagnonA, VeberP, MorinV, et al. RAR/RXR binding dynamics distinguish pluripotency from differentiation associated cis-regulatory elements. Nucleic Acids Res. 2015;43(10):4833-4854.

[58]

ChandraV, WuD, LiS, Potluri N, KimY, RastinejadF. The quaternary architecture of RARβ-RXRα heterodimer facilitates domain-domain signal transmission. Nat Commun. 2017;8(1):868.

[59]

RastinejadF, WagnerT, ZhaoQ, Khorasanizadeh S. Structure of the RXR-RAR DNA-binding complex on the retinoic acid response element DR1. EMBO J. 2000;19(5):1045-1054.

[60]

GudasLJ, WagnerJA. Retinoids regulate stem cell differentiation. J Cell Physiol. 2011;226(2):322-330.

[61]

PlevinMJ, MillsMM, IkuraM. The LxxLL motif: a multifunctional binding sequence in transcriptional regulation. Trends Biochem Sci. 2005;30(2):66-69.

[62]

le MaireA, Bourguet W. Retinoic acid receptors: structural basis for coregulator interaction and exchange. In: Asson-Batres MA, Rochette-Egly C, editors. The biochemistry of retinoic acid receptors. I: Structure, activation, and function at the molecular level. Springer Netherlands; 2014. p. 37-54.

[63]

VoegelJJ, HeineMJ, TiniM, Vivat V, ChambonP, GronemeyerH. The coactivator TIF2 contains three nuclear receptor-binding motifs and mediates transactivation through CBP binding-dependent and -independent pathways. EMBO J. 1998;17(2):507-519.

[64]

TorchiaJ, RoseDW, InostrozaJ, et al. The transcriptional co-activator p/CIP binds CBP and mediates nuclear-receptor function. Nature. 1997;387(6634):677-684.

[65]

OszJ, Brélivet Y, Peluso-IltisC, et al. Structural basis for a molecular allosteric control mechanism of cofactor binding to nuclear receptors. Proc Nat Acad Sci U S A. 2012;109(10):E588-E594.

[66]

Le MaireA, Teyssier C, ErbC, et al. A unique secondary-structure switch controls constitutive gene repression by retinoic acid receptor. Nat Struct Mol Biol. 2010;17(7):801-807.

[67]

VivatV, ZechelC, WurtzJM, et al. A mutation mimicking ligand-induced conformational change yields a constitutive RXR that senses allosteric effects in heterodimers. EMBO J. 1997;16(18):5697-5709.

[68]

SenicourtL, le Maire A, AllemandF, et al. Structural insights into the interaction of the intrinsically disordered co-activator TIF2 with retinoic acid receptor heterodimer (RXR/RAR). J Mol Biol. 2021;433(9):166899.

[69]

DarimontBD, WagnerRL, AprilettiJW, et al. Structure and specificity of nuclear receptor–coactivator interactions. Genes Dev. 1998;12(21):3343-3356.

[70]

McInerneyEM, RoseDW, FlynnSE, et al. Determinants of coactivator LXXLL motif specificity in nuclear receptor transcriptional activation. Genes Dev. 1998;12(21):3357-3368.

[71]

HeeryDM, Kalkhoven E, HoareS, ParkerMG. A signature motif in transcriptional co-activators mediates binding to nuclear receptors. Nature. 1997;387(6634):733-736.

[72]

DawsonMI, ZhangXK. Discovery and design of retinoic acid receptor and retinoid X receptor class-and subtype-selective synthetic analogs of all-trans-retinoic acid and 9-cis-retinoic acid. Curr Med Chem. 2002;9(6):623-637.

[73]

le MaireA, ReyM, VivatV, et al. Design and in vitro characterization of RXR variants as tools to investigate the biological role of endogenous rexinoids. J Mol Endocrinol. 2022;69(3):377-390.

[74]

GermainP, Kammerer S, PerezE, et al. Rational design of RAR-selective ligands revealed by RARbeta crystal structure. EMBO Rep. 2004;5(9):877-882.

[75]

KlaholzBP, Mitschler A, MorasD. Structural basis for isotype selectivity of the human retinoic acid nuclear receptor. J Mol Biol. 2000;302(1):155-170.

[76]

GudasLJ. Synthetic retinoids beyond cancer therapy. Annu Rev Pharmacol Toxicol. 2022;62:155-175.

[77]

ChisholmDR, Whiting A. Design of synthetic retinoids. Methods Enzymol. 2020;637:453-491.

[78]

NadendlaE, Teyssier C, DelfosseV, et al. An unexpected mode of binding defines BMS948 as a full retinoic acid receptor β (RARβ, NR1B2) selective agonist. PLoS One. 2015;10(5):e0123195.

[79]

le MaireA, Teyssier C, BalaguerP, BourguetW, Germain P. Regulation of RXR-RAR heterodimers by RXR-and RAR-specific ligands and their combinations. Cells. 2019;8(11):1392.

[80]

KlaholzBP, MorasD. C–H···O hydrogen bonds in the nuclear receptor RARγ—a potential tool for drug selectivity. Structure. 2002;10(9):1197-1204.

[81]

KlaholzBP, Mitschler A, BelemaM, ZusiC, MorasD. Enantiomer discrimination illustrated by high-resolution crystal structures of the human nuclear receptor hRARγ. Proc Natl Acad Sci U S A. 2000;97(12):6322-6327.

[82]

ThoreauE, Arlabosse J-M, Bouix-PeterC, et al. Structure-based design of Trifarotene (CD5789), a potent and selective RARγ agonist for the treatment of acne. Bioorg Med Chem Lett. 2018;28(10):1736-1741.

[83]

ChenJY, PencoS, OstrowskiJ, et al. RAR-specific agonist/antagonists which dissociate transactivation and AP1 transrepression inhibit anchorage-independent cell proliferation. EMBO J. 1995;14(6):1187-1197.

[84]

ShiauAK, Barstad D, LoriaPM, et al. The structural basis of estrogen receptor/coactivator recognition and the antagonism of this interaction by tamoxifen. Cell. 1998;95(7):927-937.

[85]

LiM, HenerP, ZhangZ, Kato S, MetzgerD, ChambonP. Topical vitamin D3 and low-calcemic analogs induce thymic stromal lymphopoietin in mouse keratinocytes and trigger an atopic dermatitis. Proc Natl Acad Sci U S A. 2006;103(31):11736-11141.

[86]

SunSY, YueP, MaoL, et al. Identification of receptor-selective retinoids that are potent inhibitors of the growth of human head and neck squamous cell carcinoma cells. Clin Cancer Res. 2000;6(4):1563-1573.

[87]

ChronopoulosA, Robinson B, SarperM, et al. ATRA mechanically reprograms pancreatic stellate cells to suppress matrix remodelling and inhibit cancer cell invasion. Nat Commun. 2016;7(1):12630.

RIGHTS & PERMISSIONS

2025 The Author(s). Clinical and Translational Discovery published by John Wiley & Sons Australia, Ltd on behalf of Shanghai Institute of Clinical Bioinformatics.

AI Summary AI Mindmap
PDF

815

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/